安徽省安庆市第十一中学2024届数学高一下期末监测试题含解析_第1页
安徽省安庆市第十一中学2024届数学高一下期末监测试题含解析_第2页
安徽省安庆市第十一中学2024届数学高一下期末监测试题含解析_第3页
安徽省安庆市第十一中学2024届数学高一下期末监测试题含解析_第4页
安徽省安庆市第十一中学2024届数学高一下期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省安庆市第十一中学2024届数学高一下期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一组数平均数是,方差是,则另一组数,的平均数和方差分别是()A. B.C. D.2.在△ABC中,若a=2bsinA,则B为A. B. C.或 D.或3.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,21,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列称为“斐波那契数列”,则().A.1 B.2019 C. D.4.某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4”;事件D:“击中环数大于0且小于4”,则正确的关系是A.A和B为对立事件 B.B和C为互斥事件C.C与D是对立事件 D.B与D为互斥事件5.已知函数,其中为整数,若在上有两个不相等的零点,则的最大值为()A. B. C. D.6.若实数x,y满足x2y2A.4,8 B.8,+7.在中,角,,所对的边分别为,,,若,,,则()A. B. C. D.8.设等比数列的公比,前n项和为,则()A.2 B.4 C. D.9.一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是A.两次都中靶B.至少有一次中靶C.两次都不中靶D.只有一次中靶10.椭圆中以点M(1,2)为中点的弦所在直线斜率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,长方体中,,,,与相交于点,则点的坐标为______________.12.已知向量,则与的夹角是_________.13.某球的体积与表面积的数值相等,则球的半径是14.已知向量,且,则_______.15.在△ABC中,a、b、c分别为角A、B、C的对边,若b·cosC=c·cosB,且cosA=,则cosB的值为_____.16.已知数列的通项公式为,若数列为单调递增数列,则实数的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中,平面平面,,,为棱的中点.(1)证明:;(2)求三棱柱的高.18.解答下列问题:(1)求平行于直线3x+4y-2=0,且与它的距离是1的直线方程;(2)求垂直于直线x+3y-5=0且与点P(-1,0)的距离是的直线方程.19.某质检机构检测某产品的质量是否合格,在甲、乙两厂匀速运行的自动包装传送带上每隔10分钟抽一包产品,称其质量(单位:克),分别记录抽查数据,获得质量数据茎叶图(如图).(1)该质检机构采用了哪种抽样方法抽取的产品?根据样本数据,求甲、乙两厂产品质量的平均数和中位数;(2)若从甲厂6件样品中随机抽取两件.①列举出所有可能的抽取结果;②记它们的质量分别是克,克,求的概率.20.将边长分别为、、、…、、、…的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第个、第个、……、第个阴影部分图形.设前个阴影部分图形的面积的平均值为.记数列满足,(1)求的表达式;(2)写出,的值,并求数列的通项公式;(3)定义,记,且恒成立,求的取值范围.21.在正四棱柱中,底面边长为,侧棱长为.(1)求证:平面平面;(2)求直线与平面所成的角的正弦值;(3)设为截面内-点(不包括边界),求到面,面,面的距离平方和的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

直接利用公式:平均值方差为,则的平均值和方差为:得到答案.【题目详解】平均数是,方差是,的平均数为:方差为:故答案选B【题目点拨】本题考查了平均数和方差的计算:平均数是,方差是,则的平均值和方差为:.2、C【解题分析】,,则或,选C.3、A【解题分析】

计算部分数值,归纳得到,计算得到答案.【题目详解】;;;…归纳总结:故故选:【题目点拨】本题考查了数列的归纳推理,意在考查学生的推理能力.4、D【解题分析】

根据互斥事件和对立事件的概念,进行判定,即可求解,得到答案.【题目详解】由题意,A项中,事件“击中环数等于4环”可能发生,所以事件A和B为不是对立事件;B项中,事件B和C可能同时发生,所以事件B和C不是互斥事件;C项中,事件“击中环数等于0环”可能发生,所以事件C和D为不是对立事件;D项中,事件B:“击中环数大于4”与事件D:“击中环数大于0且小于4”,不可能同时发生,所以B与D为互斥事件,故选D.【题目点拨】本题主要考查了互斥事件和对立事件的概念及判定,其中解答中熟记互斥事件和对立事件的概念,准确判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5、A【解题分析】

利用一元二次方程根的分布的充要条件得到关于的不等式,再由为整数,可得当取最小时,取最大,从而求得答案.【题目详解】∵在上有两个不相等的零点,∴∵,∴当取最小时,取最大,∵两个零点的乘积小于1,∴,∵为整数,令时,,满足.故选:A.【题目点拨】本题考查一元二次函数的零点,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意为整数的应用.6、A【解题分析】

利用基本不等式得x2y2【题目详解】∵x2y2≤(x2+y2)24∴x2故选A.【题目点拨】本题考查基本不等式求最值问题,解题关键是掌握基本不等式的变形应用:ab≤(a+b)7、C【解题分析】

在中,利用正弦定理求出即可.【题目详解】在中,角,,所对的边分别为,,,已知:,,,利用正弦定理:,解得:.故选C.【题目点拨】本题考查了正弦定理的应用及相关的运算问题,属于基础题.8、D【解题分析】

设首项为,利用等比数列的求和公式与通项公式求解即可.【题目详解】设首项为,因为等比数列的公比,所以,故选:D.【题目点拨】本题主要考查等比数列的求和公式与通项公式,熟练掌握基本公式是解题的关键,属于基础题.9、A【解题分析】

利用对立事件、互斥事件的定义直接求解.【题目详解】一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是两次都中靶.故选:A.【题目点拨】本题考查互事件的判断,是中档题,解题时要认真审题,注意对立事件、互斥事件的定义的合理运用.10、A【解题分析】

先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率.【题目详解】设弦的两端点为,,代入椭圆得,两式相减得,即,即,即,即,∴弦所在的直线的斜率为,故选A.【题目点拨】本题主要考查了椭圆的性质以及直线与椭圆的关系.在解决弦长的中点问题,涉及到“中点与斜率”时常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化,达到解决问题的目的,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

易知是的中点,求出的坐标,根据中点坐标公式求解.【题目详解】可知,,由中点坐标公式得的坐标公式,即【题目点拨】本题考查空间直角坐标系和中点坐标公式,空间直角坐标的读取是易错点.12、【解题分析】

利用向量的数量积直接求出向量的夹角即可.【题目详解】由题知,,因为,所以与的夹角为.故答案为:.【题目点拨】本题考查了利用向量的数量积求解向量的夹角,属于基础题.13、3【解题分析】试题分析:,解得.考点:球的体积和表面积14、【解题分析】

先由向量共线,求出,再由向量模的坐标表示,即可得出结果.【题目详解】因为,且,所以,解得,所以,因此.故答案为【题目点拨】本题主要考查求向量的模,熟记向量共线的坐标表示,以及向量模的坐标表示即可,属于基础题型.15、【解题分析】

利用余弦定理表示出与,代入已知等式中,整理得到,再利用余弦定理表示出,将及的值代入用表示出,将表示出的与代入中计算,即可求出值.【题目详解】由题意,由余弦定理得,代入,得,整理得,所以,即,整理得,即,则,故答案为.【题目点拨】本题考查了解三角形的综合应用,高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.16、【解题分析】

根据题意得到,推出,恒成立,求出的最大值,即可得出结果.【题目详解】因为数列的通项公式为,且数列为单调递增数列,所以,即,所以,恒成立,因此即可,又随的增大而减小,所以,因此实数的取值范围是.故答案为:【题目点拨】本题主要考查由数列的单调性求参数,熟记递增数列的特点即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】

(1)连接,,作为棱的中点,连结,,由平面平面,得到平面,则,再由,即可证明平面,从而得证;(2)根据等体积法求出点面距.【题目详解】(1)证明:连接,.∵,,∴是等边三角形.作为棱的中点,连结,,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴平行四边形是菱形.∴.又,分别为,的中点,∴,∴.又,平面,平面.∴平面.又平面,∴.(2)解:连接,∵,,∴为正三角形.∵为的中点,∴,同理可得又∵平面平面,且平面平面,平面,∴平面.∴,又三棱柱的高即点到平面的距离.在中,,,则.又∵,∴,则.【题目点拨】本题考查线面垂直,线线垂直的证明,三棱锥的体积及点到平面的距离的计算,属于中档题.18、(1)3x+4y+3=1或3x+4y-7=1(2)3x-y+9=1或3x-y-3=1【解题分析】

试题分析:(1)将平行线的距离转化为点到线的距离,用点到直线的距离公式求解;(2)由相互垂直设出所求直线方程,然后由点到直线的距离求解.试题解析:解:(1)设所求直线上任意一点P(x,y),由题意可得点P到直线的距离等于1,即,∴3x+4y-2=±5,即3x+4y+3=1或3x+4y-7=1.(2)所求直线方程为,由题意可得点P到直线的距离等于,即,∴或,即3x-y+9=1或3x-y-3=1.考点:1.两条平行直线间的距离公式;2.两直线的平行与垂直关系19、(1)系统抽样;乙厂产品质量的平均数,乙厂质量的中位数是113;甲厂质量的平均数,甲厂质量的中位数是113(2)①详见解析②【解题分析】

(1)根据抽样方式即可确定抽样方法;根据茎叶图中的数据,即可分别求得两组的平均数与中位数;(2)由甲厂的样品数据,即可由列举法得所有可能;根据列举的数据,即可得满足的情况,即可求得复合要求的概率.【题目详解】(1)由题意该质检机构抽取产品采用的抽样方法为系统抽样,甲厂质量的平均数,甲厂质量的中位数是113,乙厂产品质量的平均数,乙厂质量的中位数是113.(2)①从甲厂6件样品中随机抽取两件,分别为:,,,共15个.②设“”为事件,则事件共有5个结果:.所以的概率.【题目点拨】本题考查了茎叶图的简单应用,由茎叶图求平均值与中位数,列举法求古典概型概率的应用,属于基础题.20、(1);(2),,;(3).【解题分析】

(1)根据题意,分别求出每一个阴影部分图形的面积,即可得到前个阴影部分图形的面积的平均值;(2)依据递推式,结合分类讨论思想,即可求出数列的通项公式;(3)先求出的表达式,再依题意得到,分类讨论不等式恒成立的条件,取其交集,即得所求范围。【题目详解】(1)由题意有,第一个阴影部分图形面积是:;第二个阴影部分图形面积是:;第三个阴影部分图形面积是:;所以第个阴影部分图形面积是:;故;(2)由(1)知,,,所以,,当时,当时,,综上,数列的通项公式为,。(3)由(2)知,,,由题意可得,恒成立,①当时,,即,所以,②当时,,即,所以,③当时,,即,所以,综上,。【题目点拨】本题主要考查数列的通项公式求法,数列不等式恒成立问题的解法以及分类讨论思想的运用,意在考查学生逻辑推理能力及运算能力。21、(1)证明见解析;(2)(3)【解题分析】

(1)利用在正方体的几何性质,得到,通过线面垂直和面面垂直的判定定理证明.(2)根据和平面平面,知是在平面上的射影,即为直线与平面所成的角,然后在中求解.(3)如图所示从向面,面,面引垂线,构成一个长方体,设到面,面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论