2024届安徽省定远县第二中学数学高一第二学期期末调研试题含解析_第1页
2024届安徽省定远县第二中学数学高一第二学期期末调研试题含解析_第2页
2024届安徽省定远县第二中学数学高一第二学期期末调研试题含解析_第3页
2024届安徽省定远县第二中学数学高一第二学期期末调研试题含解析_第4页
2024届安徽省定远县第二中学数学高一第二学期期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省定远县第二中学数学高一第二学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,既是奇函数又是增函数的为()A. B. C. D.2.数列1,,,…,的前n项和为A. B. C. D.3.已知满足,且,那么下列选项中一定成立的是()A. B. C. D.4.已知中,,,的对边分别是,,,且,,,则边上的中线的长为()A. B.C.或 D.或5.平面平面,直线,,那么直线与直线的位置关系一定是()A.平行 B.异面 C.垂直 D.不相交6.某个算法程序框图如图所示,如果最后输出的的值是25,那么图中空白处应填的是()A. B. C. D.7.某学校高一、高二年级共有1800人,现按照分层抽样的方法,抽取90人作为样本进行某项调查.若样本中高一年级学生有42人,则该校高一年级学生共有()A.420人 B.480人 C.840人 D.960人8.如图,中,,,用表示,正确的是()A. B.C. D.9.已知数列的通项公式,前项和为,则关于数列、的极限,下面判断正确的是()A.数列的极限不存在,的极限存在B.数列的极限存在,的极限不存在C.数列、的极限均存在,但极限值不相等D.数列、的极限均存在,且极限值相等10.下面一段程序执行后的结果是()A.6 B.4 C.8 D.10二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的前n项和,则________.12.下列说法中:①若,满足,则的最大值为;②若,则函数的最小值为③若,满足,则的最小值为④函数的最小值为正确的有__________.(把你认为正确的序号全部写上)13.已知数列的前项和为,则其通项公式__________.14.已知函数,数列的通项公式是,当取得最小值时,_______________.15.在高一某班的元旦文艺晚会中,有这么一个游戏:一盒子内装有6张大小和形状完全相同的卡片,每张卡片上写有一个成语,它们分别为意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,从盒内随机抽取2张卡片,若这2张卡片上的2个成语有相同的字就中奖,则该游戏的中奖率为________.16.关于的不等式,对于恒成立,则实数的取值范围为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设公差不为0的等差数列中,,且构成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若数列的前项和满足:,求数列的前项和.18.求适合下列条件的直线方程:经过点,倾斜角等于直线的倾斜角的倍;经过点,且与两坐标轴围成一个等腰直角三角形。19.在中,角的对边分别为,已知(1)求;(2)若为锐角三角形,且边,求面积的取值范围.20.已知函数(1)求的值;(2)求的最大值和最小值.21.已知的内角的对边分别为,若向量,且.(1)求角的值;(2)已知的外接圆半径为,求周长的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

根据奇函数和增函数的定义逐项判断.【题目详解】选项A:不是奇函数,不正确;选项B::在是减函数,不正确;选项C:定义域上没有单调性,不正确;选项D:设,是奇函数,,在都是单调递增,且在处是连续的,在上单调递增,所以正确.故选:D.【题目点拨】本题考查函数的性质,对于常用函数的性质要熟练掌握,属于基础题.2、B【解题分析】

数列为,则所以前n项和为.故选B3、D【解题分析】

首先根据题意得到,,结合选项即可找到答案.【题目详解】因为,所以.因为,所以.故选:D【题目点拨】本题主要考查不等式的性质,属于简单题.4、C【解题分析】

由已知利用余弦定理可得,解得a值,由已知可求中线,在中,由余弦定理即可计算AB边上中线的长.【题目详解】解:,由余弦定理,可得,整理可得:,解得或1.如图,CD为AB边上的中线,则,在中,由余弦定理,可得:,或,解得AB边上的中线或.故选C.【题目点拨】本题考查余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.5、D【解题分析】

利用空间中线线、线面、面面的位置关系得出直线与直线没有公共点.【题目详解】由题平面平面,直线,则直线与直线的位置关系平行或异面,即两直线没有公共点,不相交.故选D.【题目点拨】本题考查空间中两条直线的位置关系,属于简单题.6、B【解题分析】

分别依次写出每次循环所得答案,再与输出结果比较,得到答案.【题目详解】由程序框图可知,第一次循环后,,,;第二次循环后,,,;第三次循环后,,,;第四次循环后,,,;第五次循环后,,,此时,则图中空白处应填的是【题目点拨】本题主要考查循环结构由输出结果计算判断条件,难度不大.7、C【解题分析】

先由样本容量和总体容量确定抽样比,用高一年级抽取的人数除以抽样比即可求出结果.【题目详解】由题意需要从1800人中抽取90人,所以抽样比为,又样本中高一年级学生有42人,所以该校高一年级学生共有人.故选C【题目点拨】本题主要考查分层抽样,先确定抽样比,即可确定每层的个体数,属于基础题型.8、C【解题分析】

由平面向量基本定理和三角形法则求解即可【题目详解】由,可得,则,即.故选C.【题目点拨】本题考查平面向量基本定理和三角形法则,熟记定理和性质是解题关键,是基础题9、D【解题分析】

分别考虑与的极限,然后作比较.【题目详解】因为,又,所以数列、的极限均存在,且极限值相等,故选D.【题目点拨】本题考查数列的极限的是否存在的判断以及计算,难度一般.注意求解的极限时,若是分段数列求和的形式,一定要将多段数列均考虑到.10、A【解题分析】

根据题中的程序语句,直接按照顺序结构的功能即可求出。【题目详解】由题意可得:,,,所以输出为6,故选A.【题目点拨】本题主要考查顺序结构的程序框图的理解,理解语句的含义是解题关键。二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

先利用求出,在利用裂项求和即可.【题目详解】解:当时,,当时,,综上,,,,故答案为:.【题目点拨】本题考查和的关系求通项公式,以及裂项求和,是基础题.12、③④【解题分析】

①令,得出,再利用双勾函数的单调性判断该命题的正误;②将函数解析式变形为,利用基本不等式判断该命题的正误;③由得出,得出,利用基本不等式可判断该命题的正误;④将代数式与代数式相乘,展开后利用基本不等式可求出的最小值,进而判断出该命题的正误。【题目详解】①由得,则,则,设,则,则,则上减函数,则上为增函数,则时,取得最小值,当时,,故的最大值为,错误;②若,则函数,则,即函数的最大值为,无最小值,故错误;③若,满足,则,则,由,得,则,当且仅当,即得,即时取等号,即的最小值为,故③正确;④,当且仅当,即,即时,取等号,即函数的最小值为,故④正确,故答案为:③④。【题目点拨】本题考查利用基本不等式来判断命题的正误,利用基本不等式需注意满足“一正、二定、三相等”这三个条件,同时注意结合双勾函数单调性来考查,属于中等题。13、【解题分析】分析:先根据和项与通项关系得当时,,再检验,时,不满足上述式子,所以结果用分段函数表示.详解:∵已知数列的前项和,∴当时,,当时,,经检验,时,不满足上述式子,故数列的通项公式.点睛:给出与的递推关系求,常用思路是:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与之间的关系,再求.应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.14、110【解题分析】

要使取得最小值,可令,即,对的值进行粗略估算即可得到答案.【题目详解】由题知:①.要使①式取得最小值,可令①式等于.即,.又因为,,则当时,,,①式.则当时,,,①式.当或时,①式的值会变大,所以时,取得最小值.故答案为:【题目点拨】本题主要考查数列的函数特征,同时考查了指数函数和对数函数的性质,核心素养是考查学生灵活运用知识解决问题的能力,属于难题.15、【解题分析】

先列举出总的基本事件,在找出其中有2个成语有相同的字的基本事件个数,进而可得中奖率.【题目详解】解:先观察成语中的相同的字,用字母来代替这些字,气—A,风—B,马—C,信—D,河—E,意—F,用ABF,B,CF,CD,AE,DE分别表示成语意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,则从盒内随机抽取2张卡片有共15个基本事件,其中有相同字的有共6个基本事件,该游戏的中奖率为,故答案为:.【题目点拨】本题考查古典概型的概率问题,关键是要将符合条件的基本事件列出,是基础题.16、或【解题分析】

利用换元法令,则对任意的恒成立,再对分两种情况讨论,令求出函数的最小值,即可得答案.【题目详解】令,则对任意的恒成立,(1)当,即时,上式显然成立;(2)当,即时,令①当时,,显然不成立,故不成立;②当时,,∴解得:综上所述:或.故答案为:或.【题目点拨】本题考查含绝对值函数的最值问题,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意分段函数的最值求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解题分析】

(Ⅰ)根据条件列方程解得公差,再根据等差数列通项公式得结果,(Ⅱ)先根据和项求通项,再根据错位相减法求和.【题目详解】(Ⅰ)因为构成等比数列,所以(0舍去)所以(Ⅱ)当时,当时,,相减得所以即【题目点拨】本题考查等差数列通项公式以及错位相减法求和,考查基本分析求解能力,属中档题.18、(1)(2)或【解题分析】

(1)根据倾斜角等于直线的倾斜角的倍,求出直线的倾斜角,再利用点斜式写出直线。(2)与两坐标轴围成一个等腰直角三角形等价于直线的斜率为.【题目详解】(1)已知,直线方程为化简得(2)由题意可知,所求直线的斜率为.又过点,由点斜式得,所求直线的方程为或【题目点拨】本题考查直线方程,属于基础题。19、(1);(2)【解题分析】

(1)利用正弦定理边化角,再利用和角的正弦公式化简即得B的值;(2)先根据已知求出,再求面积的取值范围.【题目详解】解:(1),即可得,∵∴∵∴∴由,可得;(2)若为锐角三角形,且,由余弦定理可得,由三角形为锐角三角形,可得且解得,可得面积【题目点拨】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的取值范围的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1);(2),.【解题分析】

(1)直接将值代入即可求得对应的函数值.(2)将函数化简为的形式,并求出最大值,最小值【题目详解】(1).(2),当时,取得最大值;当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论