版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市西南大附属中学2023-2024学年八上数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.、在数轴上的位置如图所示,那么化简的结果是()A. B. C. D.2.在等腰三角形中,,则可以有几个不同值()A.4个 B.3个 C.2个 D.1个3.若(x+a)(x2﹣x﹣b)的乘积中不含x的二次项和一次项,则常数a、b的值为()A.a=1,b=﹣1 B.a=﹣1,b=1 C.a=1,b=1 D.a=﹣1,b=﹣14.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米,数据0.000000007用科学记数法表示为()A.0.7×10-8 B.7×10-8 C.7×10-9 D.7×10-105.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=3,则点P到边OA的距离是()A.1 B.2 C.3 D.46.将长度为5cm的线段向上平移10cm所得线段长度是()A.10cm B.5cm C.0cm D.无法确定7.立方根等于它本身的有()A.0,1 B.-1,0,1 C.0, D.18.下列各数-,,0.3,,,其中有理数有()A.2个 B.3个 C.4个 D.5个9.
的倒数是(
)A. B. C. D.10.某地区开展“二十四节气”标识系统设计活动,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A. B.C. D.二、填空题(每小题3分,共24分)11.小明用加减消元法解二元一次方程组.由①②得到的方程是________.12.已知反比例函数,当时,的值随着增大而减小,则实数的取值范围__________.13.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间比乙做40个所用的时间相等,则乙每小时所做零件的个数为_____.14.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.15.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.16.若二次根式是最简二次根式,则最小的正整数为______.17.在坐标系中,已知点关于轴,轴的对称点分别为,,若坐标轴上的点恰使,均为等腰三角形,则满足条件的点有______个.18.小明用S2=[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点B,且与正比例函数的图象交点为.(1)求正比例函数与一次函数的关系式.(2)若点D在第二象限,是以AB为直角边的等腰直角三角形,请求出点D的坐标.(3)在轴上是否存在一点P使为等腰三角形,若存在,求出所有符合条件的点P的坐标.20.(6分)先化简,再求值:﹣3x2﹣[x(2x+1)+(4x3﹣5x)÷2x],其中x是不等式组的整数解.21.(6分)如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=10cm,若点M从点B出发以2cm/s的速度向点A运动,点N从点A出发以1cm/s的速度向点C运动,设M、N分别从点B、A同时出发,运动的时间为ts.(1)用含t的式子表示线段AM、AN的长;(2)当t为何值时,△AMN是以MN为底边的等腰三角形?(3)当t为何值时,MN∥BC?并求出此时CN的长.22.(8分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.23.(8分)一辆汽车开往距离出发地的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后速度提高匀速行驶,并比原计划提前到达目的地,求前一小时的行驶速度.24.(8分)如图,点A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.25.(10分)化简:(1)(2)26.(10分)如图,在中,点在线段上,.(1)求证:(2)当时,求的度数.
参考答案一、选择题(每小题3分,共30分)1、B【分析】先根据数轴确定出a,b的正负,进而确定出的正负,再利用绝对值的性质和二次根式的性质化简即可.【详解】由数轴可知∴∴原式=故选:B.【点睛】本题主要结合数轴考查绝对值的性质及二次根式的性质,掌握绝对值的性质及二次根式的性质是解题的关键.2、B【分析】根据等腰三角形的定义,∠A可能是底角,也可能是顶角,进行分类讨论即可.【详解】解:①当∠A是顶角时,∠B=∠C=,②当∠A为底角,∠B也为底角时,,③当∠A为底角,∠B为顶角时,∠B=,故答案为:B.【点睛】本题考查了等腰三角形等边对等角的性质,涉及分类讨论问题,解题的关键是对∠A,∠B进行分类讨论.3、A【分析】根据多项式乘以多项式法则展开,即可得出﹣1+a=1,﹣b﹣a=1,求出即可.【详解】解:(x+a)(x2﹣x﹣b)=x3﹣x2﹣bx+ax2﹣ax﹣ab=x3+(﹣1+a)x2+(﹣b﹣a)x﹣ab,∵(x+a)(x2﹣x﹣b)的乘积中不含x的二次项和一次项,∴﹣1+a=1,﹣b﹣a=1,∴a=1,b=﹣1,故选:A.【点睛】本题考查了多项式乘以多项式法则的应用,关键根据(x+a)(x2﹣x﹣b)的乘积中不含x的二次项和一次项,得出方程-1+a=1,-b-a=1.4、C【分析】绝对值小于1的数也可以用科学计数法表示,一般形式为a×10-n,其中1≤|a|<10,与较大数的科学计数法不同的是其使用的是负指数幂,n由原数左边起第一个不为零的数字前面的0的个数决定.【详解】0.000000007=7×10-9,故选:C.【点睛】题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数决定.5、C【分析】作PE⊥OA于E,根据角平分线的性质解答.【详解】解:作PE⊥OA于E,
∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,
∴PE=PD=3,
故选:C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6、B【详解】解:平移不改变图形的大小和形状.故线段长度不变,仍为5cm.故选:B.7、B【分析】根据立方根性质可知,立方根等于它本身的实数2、1或-1.【详解】解:∵立方根等于它本身的实数2、1或-1.
故选B.【点睛】本题考查立方根:如果一个数x的立方等于a,那么这个数x就称为a的立方根,例如:x3=a,x就是a的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,2的立方根是2.8、B【分析】依据有理数的定义和实数分类进行判断即可.【详解】解:∵=-3,∴-,0.3,是有理数.而,是无理数,∴有理数有3个.故选:B.【点睛】此题主要考查了有理数的相关概念和实数的分类,正确把握相关定义是解题的关键.9、C【解析】根据倒数定义可知,的倒数是.【详解】解:-×-=1故答案为:C.【点睛】此题考查倒数的定义,解题关键在于熟练掌握其定义.10、D【分析】根据轴对称图形的概念求解即可.【详解】A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选D.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(每小题3分,共24分)11、【分析】直接利用两式相减进而得出消去x后得到的方程.【详解】,①②得:.故答案为:.【点睛】此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键.12、【分析】先根据反比例函数的性质得出1-2k>0,再解不等式求出k的取值范围.【详解】反比例函数的图象在其每个象限内,随着的增大而减小,,.故答案为:.【点睛】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.13、1【详解】解:设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为,列方程为:=,解得:x=1,经检验:x=1是原分式方程的解,且符合题意,所以乙每小时做1个,故答案为1.【点睛】本题考查了列分式方程解实际问题的运用,解答时甲做60个零件所用的时间与乙做90个零件所用的时间相等建立方程是关键.14、【解析】试题解析:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD=.【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.15、【解析】试题解析:所以故答案为16、1【分析】根据最简二次根式的定义求解即可.【详解】解:∵a是正整数,且是最简二次根式,∴当a=1时,,不是最简二次根式,当a=1时,,是最简二次根式,则最小的正整数a为1,故答案为:1.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.17、5【分析】如图所示,利用两圆一线的方法,判断点M的个数即可.【详解】解:如图,分别以A,Q为圆心,以AQ长度为半径画出两个较大的圆,此时x轴上的点满足与A,Q组成等腰三角形有5个,y轴上的点均可满足与A,Q组成等腰三角形,然后分别以A,P为圆心以AP的产生古为半径画出两个较小的圆,此时坐标轴上只有x轴上的点满足与A,P组成等腰三角形,因此点恰使,均为等腰三角形共有5个.【点睛】此题主要考查等腰三角形的性质和坐标与图形的性质,解答此题的关键是利用等腰三角形性质判断相关的点.18、30【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.【详解】解:∵S2=[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],∴平均数为3,共10个数据,∴x1+x2+x3+…+x10=10×3=30.故答案为30.【点睛】本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.三、解答题(共66分)19、(1),;(2)点D的坐标为或;(3)或或或.【分析】(1)根据待定系数法即可解决;(2)分两种情形讨论,添加辅助线构造全等三角形即可求出点D坐标;(3)分OP=OC、CP=CO、PC=PO三种情形即可得出结论.【详解】解:(1)正比例函数的图象经过点,,,正比例函数解析式为,一次函数的图象经过,,,,一次函数为.(2)①当时,如图1,作轴垂足为M,,,,在与中:,,,,.②当时,作轴垂足为N,同理得,,,,D点坐标为或.(3)设点,,,,,当时,,,或,当时,,或(舍),,当时,,,,即:或或或.【点睛】此题是一次函数综合题,主要考查待定系数法求一次函数、全等三角形的判定和性质、勾股定理等知识,学会分类讨论的数学思想是正确解题的关键.20、-7x2-x+,【解析】先根据整式的混合运算顺序和运算法则化简原式,再解不等式组求得其整数解,代入计算可得.【详解】解:解不等式组得1≤x<2,其整数解为1.∵-3x2-[x(2x+1)+(4x3-5x)÷2x]=-3x2-2x2-x-2x2+=-7x2-x+.∴当x=1时,原式=-7×12-1+=-.【点睛】本题主要考查整式的化简求值和解一元一次不等式,解题的关键是掌握整式混合运算顺序和运算法则.21、(1)AM=10﹣2t,AN=t;(2)t=;(3)当t=时,MN∥BC,CN=.【解析】(1)根据直角三角形的性质即可得到结论;(2)根据等腰三角形的性质得到AM=AN,列方程即可得到结论.【详解】(1)∵∠C=90°,∠A=60°,∴∠B=30°,∵AB=10cm,∴AM=AB﹣BM=10﹣2t,AN=t;(2)∵△AMN是以MN为底的等腰三角形,∴AM=AN,即10﹣2t=t,∴当t=时,△AMN是以MN为底边的等腰三角形;(3)当MN⊥AC时,MN∥BC,∵∠C=90°,∠A=60°,∴∠B=30°,∵MN∥BC,∴∠NMA=30°,∴AN=AM,∴t=(10﹣2t),解得t=,∴当t=时,MN∥BC,CN=5﹣×1=.【点睛】本题考查的是等腰三角形的判定及平行线的判定与性质,熟知等腰三角形的两腰相等是解答此题的关键.22、(1)AB的解析式是y=-x+1.点B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解析】试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐标;(2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;(3)当S△ABP=2时,n-1=2,解得n=2,则∠OBP=45°,然后分A、B、P分别是直角顶点求解.试题解析:(1)∵y=-x+b经过A(0,1),∴b=1,∴直线AB的解析式是y=-x+1.当y=0时,0=-x+1,解得x=3,∴点B(3,0).(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,y=-x+1=,P在点D的上方,∴PD=n-,S△APD=PD•AM=×1×(n-)=n-由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)当S△ABP=2时,n-1=2,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3种情况,如图3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件代理服务合同定制
- 工业气体订购协议详解
- 互联网广告发布合同
- 肉禽购销协议格式
- 房屋买卖合同签订法律咨询
- 物资采购合同评审表
- 动画制作招标文件
- 房屋宅基地买卖合同纠纷处理
- 2024哺乳期解除劳动合同协议书
- 农业科研成果与农民知识产权保护考核试卷
- 高速公路施工交通组织专项方案
- 全国教师教学创新团队申报书(范例)
- GMP质量体系洁净度检测报告书
- YS/T 755-2011亚硝酰基硝酸钌
- LS 8010-2014植物油库设计规范
- GB/T 9119-2000平面、突面板式平焊钢制管法兰
- GB/T 4955-1997金属覆盖层覆盖层厚度测量阳极溶解库仑法
- GB/T 33143-2016锂离子电池用铝及铝合金箔
- GB/T 26316-2010市场、民意和社会调查服务要求
- GB/T 22427.7-2008淀粉粘度测定
- GB/T 17644-1998纺织纤维白度色度试验方法
评论
0/150
提交评论