贵州省遵义市示范初中2024届数学高一第二学期期末统考试题含解析_第1页
贵州省遵义市示范初中2024届数学高一第二学期期末统考试题含解析_第2页
贵州省遵义市示范初中2024届数学高一第二学期期末统考试题含解析_第3页
贵州省遵义市示范初中2024届数学高一第二学期期末统考试题含解析_第4页
贵州省遵义市示范初中2024届数学高一第二学期期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省遵义市示范初中2024届数学高一第二学期期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若圆心坐标为的圆,被直线截得的弦长为,则这个圆的方程是()A. B.C. D.2.已知在R上是奇函数,且满足,当时,,则()A.-2 B.2 C.-98 D.983.空间直角坐标系中,点关于轴对称的点的坐标是()A. B.C. D.4.“φ=”是“函数y=sin(x+φ)为偶函数的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.函数(且)的图像是下列图像中的()A. B.C. D.6.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则圆锥的底面半径为A. B. C. D.()7.下列角位于第三象限的是()A. B. C. D.8.已知等差数列的前项和为,则()A. B. C. D.9.名小学生的身高(单位:cm)分成了甲、乙两组数据,甲组:115,122,105,111,109;乙组:125,132,115,121,119.两组数据中相等的数字特征是()A.中位数、极差 B.平均数、方差C.方差、极差 D.极差、平均数10.在中,,则是()A.等边三角形 B.直角三角形C.等腰三角形 D.等腰直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.直线x-312.已知数列的前项和满足,则______.13.已知直线l过点P(-2,5),且斜率为-,则直线l的方程为________.14.若,则=_________15.中,内角,,所对的边分别是,,,且,,则的值为__________.16.已知数列满足:其中,若,则的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.知两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,求当m为何值时,l1与l2:(1)垂直;(2)平行,并求出两平行线间的距离.18.已知数列,,,且.(1)设,证明数列是等比数列,并求数列的通项;(2)若,并且数列的前项和为,不等式对任意正整数恒成立,求正整数的最小值.(注:当时,则)19.如图,在四棱锥中,底面为菱形,、、分别是棱、、的中点,且平面.(1)求证:平面;(2)求证:平面.20.设向量.(1)当时,求的值;(2)若,且,求的值.21.已知函数.(1)当时,解不等式;(2)若,的解集为,求的最小値.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

设出圆的方程,求出圆心到直线的距离,利用圆心到直线的距离、半径和半弦长满足勾股定理,求得圆的半径,即可求得圆的方程,得到答案.【题目详解】由题意,设圆的方程为,则圆心到直线的距离为,又由被直线截得的弦长为,则,所以所求圆的方程为,故选B.【题目点拨】本题主要考查了圆的方程的求解,以及直线与圆的弦长的应用,其中解答中熟记直线与圆的位置关系,合理利用圆心到直线的距离、半径和半弦长满足勾股定理是解答的关键,着重考查了推理与运算能力,属于基础题.2、A【解题分析】

由在R上是奇函数且周期为4可得,即可算出答案【题目详解】因为在R上是奇函数,且满足所以因为当时,所以故选:A【题目点拨】本题考查的是函数的奇偶性和周期性,较简单.3、A【解题分析】

关于轴对称,纵坐标不变,横坐标、竖坐标变为相反数.【题目详解】关于轴对称的两点的纵坐标相同,横坐标、竖坐标均互为相反数.所以点关于轴对称的点的坐标是.故选:A.【题目点拨】本题考查空间平面直角坐标系,考查关于坐标轴、坐标平面对称的问题.属于基础题.4、A【解题分析】试题分析:当时,时,是偶函数,当是偶函数时,,所以不能推出是,所以是充分不必要条件,故选A.考点:三角函数的性质5、C【解题分析】

将函数表示为分段函数的形式,由此确定函数图像.【题目详解】依题意,.由此判断出正确的选项为C.故选C.【题目点拨】本小题主要考查三角函数图像的识别,考查分段函数解析式的求法,考查同角三角函数的基本关系式,属于基础题.6、C【解题分析】解:7、D【解题分析】

根据第三象限角度的范围,结合选项,进行分析选择.【题目详解】第三象限的角度范围是.对A:,是第二象限的角,故不满足题意;对B:是第二象限的角度,故不满足题意;对C:是第二象限的角度,故不满足题意;对D:,是第三象限的角度,满足题意.故选:D.【题目点拨】本题考查角度范围的判断,属基础题.8、C【解题分析】

利用等差数列的求和公式及性质即可得到答案.【题目详解】由于,根据等差数列的性质,,故选C.【题目点拨】本题主要考查等差数列的性质与求和,难度不大.9、C【解题分析】

将甲、乙两组数据的极差、平均数、中位数、方差全部算出来,并进行比较,可得出答案.【题目详解】甲组数据由小到大排列依次为:、、、、,极差为,平均数为中位数为,方差为,乙组数据由小到大排列依次为:、、、、,极差为,平均数为中位数为,方差为,因此,两组数据相等的是极差和方差,故选C.【题目点拨】本题考查样本的数字特征,理解极差、平均数、中位数、方差的定义并利用相关公式进行计算是解本题的关键,考查计算能力,属于基础题.10、C【解题分析】

由二倍角公式可得,,再根据诱导公式可得,然后利用两角和与差的余弦公式,即可将化简成,所以,即可求得答案.【题目详解】因为,,所以,,即,.故选:C.【题目点拨】本题主要考查利用二倍角公式,两角和与差的余弦公式进行三角恒等变换,意在考查学生的数学运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、π【解题分析】

将直线方程化为斜截式,利用直线斜率与倾斜角的关系求解即可.【题目详解】因为x-3所以y=33x-33则tanα=33,α=【题目点拨】本题主要考查直线的斜率与倾斜角的关系,意在考查对基础知识的掌握情况,属于基础题.12、5【解题分析】

利用求得,进而求得的值.【题目详解】当时,,当时,,当时上式也满足,故的通项公式为,故.【题目点拨】本小题主要考查已知求,考查运算求解能力,属于基础题.13、3x+4y-14=0【解题分析】由y-5=-(x+2),得3x+4y-14=0.14、【解题分析】

∵,∴∴=1×[+]=1.故答案为:1.15、4【解题分析】

利用余弦定理变形可得,从而求得结果.【题目详解】由余弦定理得:本题正确结果:【题目点拨】本题考查余弦定理的应用,关键是能够熟练应用的变形,属于基础题.16、【解题分析】

令,逐步计算,即可得到本题答案.【题目详解】1.当时,因为,所以;2.当时,因为,所以;3.当时,①若,即,有,1)当,即,,由题,有,得,综上,无解;2)当,即,,由题,有,得,综上,无解;②若,,,1)当,即,,由题,有,得,综上,得;2)当,即,,由题,有,得,综上,得.所以,.故答案为:.【题目点拨】本题主要考查由数列递推公式确定参数取值范围的问题,分类讨论思想是解决本题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)m(2)m=﹣7,距离为【解题分析】

(1)由题意利用两条直线垂直的性质,求出m的值.(2)由题意利用两条直线平行的性质,求出m的值,再利用两平行线间的距离公式,求出结果.【题目详解】(1)两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,当(3+m)•2+4(5+m)=0时,即6m+26=0时,l1与l2垂直,即m时,l1与l2垂直.(2)当时,l1与l2平行,即m=﹣7时,l1与l2平行,此时,两条直线l1:﹣2x+2y=13,l2:﹣2x+2y=﹣8,此时,两平行线间的距离为.【题目点拨】本题主要考查两条直线垂直、平行的性质,两条平行线间的距离公式,属于基础题.18、(1)证明见解析,(2)10【解题分析】

(1)根据等比数列的定义,结合题中条件,计算,,即可证明数列是等比数列,求出;再根据累加法,即可求出数列的通项;(2)根据题意,得到,分别求出,当,用放缩法得,根据裂项相消法求,进而可求出结果.【题目详解】(1)证明:,而∴是以4为首项2为公比的等比数列,,∴即,,所以,,......,,以上各式相加得:;∴;(2)由(1)得:,,,,,由已知条件知当时,,即∴,而综上所述得最小值为10.【题目点拨】本题主要考查证明数列为等比数列,求数列的通项公式,以及数列的应用,熟记等比数列的概念,累加法求数列的通项公式,以及裂项相消法求数列的和等即可,属于常考题型.19、(1)见解析;(2)见解析【解题分析】

(1)取中点,连接,,得,利用直线与平面平行的判定定理证明平面.(2)连结,由已知条件得,由平面,得,利用直线与平面垂直的判定定理证明平面.【题目详解】(1)取中点,连接,,∵、分别是棱、的中点,∴,且.∵在菱形中,是的中点,∴,且,∴且,∴为平行四边形.∴.∵平面,平面,∴平面.(2)连接,∵是菱形,∴,∵,分别是棱、的中点,∴,∴,∵平面,平面,∴,∵,、平面,∴平面.【题目点拨】本题考查直线与平面平行以及直线与平面垂直的判定定理的应用,考查学生分析解决问题的能力,属于中档题.20、(1);(2).【解题分析】

(1)直接由向量的模长公式进行计算.

(2)由向量平行的公式可得,再用余弦的二倍角和正弦的和角公式,然后再转化为的式子,代值即可.【题目详解】(1)因为,所以,所以.(2)由得,所以,故.【题目点拨】本题考查向量求模长和向量的平行的坐标公式的利用,以及三角函数的化简求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论