版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省陵川第一中学校高一数学第二学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果直线l过点(2,1),且在y轴上的截距的取值范围为(﹣1,2),那么l的斜率k的取值范围是()A.(,1) B.(﹣1,1)C.(﹣∞,)∪(1,+∞) D.(﹣∞,﹣1)∪(1,+∞)2.直线x-2y+2=0关于直线x=1对称的直线方程是()A.x+2y-4=0 B.2x+y-1=0 C.2x+y-3=0 D.2x+y-4=03.执行如图所示的程序框图,则输出的的值为()A.3 B.4 C.5 D.64.经统计某射击运动员随机命中的概率可视为,为估计该运动员射击4次恰好命中3次的概率,现采用随机模拟的方法,先由计算机产生0到9之间取整数的随机数,用0,1,2没有击中,用3,4,5,6,7,8,9表示击中,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7525,0293,7140,9857,0347,4373,8638,7815,1417,55500371,6233,2616,8045,6011,3661,9597,7424,7610,4281根据以上数据,则可估计该运动员射击4次恰好命中3次的概率为()A. B. C. D.5.等差数列{}中,=2,=7,则=()A.10 B.20 C.16 D.126.采用系统抽样方法从人中抽取人做问卷调查,为此将他们随机编号为,,,,分组后某组抽到的号码为1.抽到的人中,编号落入区间的人数为()A.10 B. C.12 D.137.若数列的前项和为,则下列命题:(1)若数列是递增数列,则数列也是递增数列;(2)数列是递增数列的充要条件是数列的各项均为正数;(3)若是等差数列,则的充要条件是;(4)若是等比数列且,则的充要条件是;其中,正确命题的个数是()A.0个 B.1个 C.2个 D.3个8..设、是关于x的方程的两个不相等的实数根,那么过两点,的直线与圆的位置关系是()A.相离. B.相切. C.相交. D.随m的变化而变化.9.在△ABC中,内角A、B、C所对的边分别为a、b、c,若,则()A. B. C. D.10.若,则是()A.等边三角形 B.等腰三角形C.直角或等腰三角形 D.等腰直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.若圆弧长度等于圆内接正六边形的边长,则该圆弧所对圆心角的弧度数为________.12.已知向量,,且,则______.13.设等差数列的前项和为,若,,则______.14.已知等差数列的前n项和为,若,则的值为______________.15.一艘轮船按照北偏西30°的方向以每小时21海里的速度航行,一个灯塔M原来在轮船的北偏东30°的方向,经过40分钟后,测得灯塔在轮船的北偏东75°的方向,则灯塔和轮船原来的距离是_____海里.16.与30°角终边相同的角_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知分别为三个内角的对边长,且(1)求角的大小;(2)若,求面积的最大值.18.如图,在平面直角坐标系中,点,,锐角的终边与单位圆O交于点P.(Ⅰ)当时,求的值;(Ⅱ)在轴上是否存在定点M,使得恒成立?若存在,求出点M坐标;若不存在,说明理由.19.如图,在平面直角坐标系中,已知圆:,点,过点的直线与圆交于不同的两点(不在y轴上).(1)若直线的斜率为3,求的长度;(2)设直线的斜率分别为,求证:为定值,并求出该定值;(3)设的中点为,是否存在直线,使得?若存在,求出直线的方程;若不存在,说明理由.20.在中,的对边分别为,已知.(1)求的值;(2)若的面积为,,求的值.21.在平面直角坐标系中,已知圆过坐标原点且圆心在曲线上.(1)若圆分别与轴、轴交于点、(不同于原点),求证:的面积为定值;(2)设直线与圆交于不同的两点、,且,求圆的方程;(3)设直线与(2)中所求圆交于点、,为直线上的动点,直线、与圆的另一个交点分别为、,求证:直线过定点.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
利用直线的斜率公式,求出当直线经过点时,直线经过点时的斜率,即可得到结论.【题目详解】设要求直线的斜率为,当直线经过点时,斜率为,当直线经过点时,斜率为,故所求直线的斜率为.故选:A.【题目点拨】本题主要考查直线的斜率公式,属于基础题.2、A【解题分析】
所求直线的斜率与直线x-2y+2=0的斜率互为相反数,且在x=1处有公共点,求解即可。【题目详解】直线x-2y+2=0与直线x=1的交点为P1,3因为直线x-2y+2=0的斜率为12,所以所求直线的斜率为-故所求直线方程为y-32=-故答案为A.【题目点拨】本题考查了直线的斜率,直线的方程,直线关于直线的对称问题,属于基础题。3、C【解题分析】
根据框图模拟程序运算即可.【题目详解】第一次执行程序,,,继续循环,第二次执行程序,,,,继续循环,第三次执行程序,,,,继续循环,第四次执行程序,,,,继续循环,第五次执行程序,,,,跳出循环,输出,结束.故选C.【题目点拨】本题主要考查了程序框图,涉及循环结构,解题关键注意何时跳出循环,属于中档题.4、A【解题分析】
根据20组随机数可知该运动员射击4次恰好命中3次的随机数共8组,据此可求出对应的概率.【题目详解】由题意,该运动员射击4次恰好命中3次的随机数为:7525,0347,7815,5550,6233,8045,3661,7424,共8组,则该运动员射击4次恰好命中3次的概率为.故答案为A.【题目点拨】本题考查了利用随机模拟数表法求概率,考查了学生对基础知识的掌握.5、D【解题分析】
根据等差数列的性质可知第五项减去第三项等于公差的2倍,由=+5得到2d等于5,然后再根据等差数列的性质得到第七项等于第五项加上公差的2倍,把的值和2d的值代入即可求出的值,即可知=,故选D.6、C【解题分析】
由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为an=30n﹣19,由401≤30n﹣21≤755,求得正整数n的个数,即可得出结论.【题目详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列,又某组抽到的号码为1,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,∴等差数列的通项公式为an=11+(n﹣1)30=30n﹣19,由401≤30n﹣19≤755,n为正整数可得14≤n≤25,∴做问卷C的人数为25﹣14+1=12,故选C.【题目点拨】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.7、B【解题分析】
对各选项逐个论证或给出反例后可得正确的命题的个数.【题目详解】对于(1),取,则,因该数列的公差为,故是递增数列.,故,所以数列不是递增数列,故(1)错.对于(2),取,则,数列是递增数列,但,故数列是递增数列推不出的各项均为正数,故(2)错.对于(3),取,则,,故当时,但总成立,故总成立,故推不出,故(3)错.对于(4),设公比为,若,若,则,,矛盾,故.又,故必存在,使得即,即,所以,故,所以是的必要条件.若,则,所以,所以,所以是的充分条件故的充要条件是,故(4)正确.故选:B.【题目点拨】本题考查数列的单调性、数列的前项和的单调性以及等比数列前项和的积的性质,对于等差数列的单调性,我们可以求出前项和关于的二次函数的形式,再由二次函数的性质讨论其单调性,也可以根据项的符号来判断前项和的单调性.应用等比数列的求和公式时,注意对公比是否为1分类讨论.8、D【解题分析】直线AB的方程为.即,所以直线AB的方程为,因为,所以,所以,所以直线AB与圆可能相交,也可能相切,也可能相离.9、A【解题分析】
由正弦定理可得,再结合求解即可.【题目详解】解:由,又,则,由,则,故选:A.【题目点拨】本题考查了正弦定理,属基础题.10、D【解题分析】
先根据题中条件,结合正弦定理得到,求出角,同理求出角,进而可判断出结果.【题目详解】因为,由正弦定理可得,所以,即,因为角为三角形内角,所以;同理,;所以,因此,是等腰直角三角形.故选D【题目点拨】本题主要考查判定三角形的形状问题,熟记正弦定理即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】
根据圆的内接正六边形的边长得出弧长,利用弧长公式即可得到圆心角.【题目详解】因为圆的内接正六边形的边长等于圆的半径,所以圆弧长所对圆心角的弧度数为1.故答案为:1【题目点拨】此题考查弧长公式,根据弧长求圆心角的大小,关键在于熟记圆的内接正六边形的边长.12、【解题分析】
根据的坐标表示,即可得出,解出即可.【题目详解】,,.【题目点拨】本题主要考查平行向量的坐标关系应用.13、10【解题分析】
将和用首项和公差表示,解方程组,求出首项和公式,利用公式求解.【题目详解】设该数列的公差为,由题可知:,解得,故.故答案为:10.【题目点拨】本题考查由基本量计算等差数列的通项公式以及前项和,属基础题.14、1【解题分析】
由等差数列的性质可得a7+a9+a11=3a9,而S17=17a9,故本题可解.【题目详解】∵a1+a17=2a9,∴S1717a9=170,∴a9=10,∴a7+a9+a11=3a9=1;故答案为:1.【题目点拨】本题考查了等差数列的前n项和公式与等差数列性质的综合应用,属于基础题.15、【解题分析】
画出示意图,利用正弦定理求解即可.【题目详解】如图所示:为灯塔,为轮船,,则在中有:,且海里,则解得:海里.【题目点拨】本题考查解三角形的实际应用,难度较易.关键是能通过题意将航海问题的示意图画出,然后选用正余弦定理去分析问题.16、【解题分析】
根据终边相同的角的定义可得答案.【题目详解】与30°角终边相同的角,故答案为:【题目点拨】本题考查了终边相同的角的定义,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)利用正弦定理、三角形内角和定理、两角和的正弦公式,特殊角的三角函数值,化简等式进行求解即可(2)根据余弦定理,结合三角形面积公式、重要不等式进行求解即可【题目详解】(1)由正弦定理可知:,,,所以可得:,;(2)由余弦定理可知:,由可知:,所以,所以面积的最大值为【题目点拨】本题考查了正弦定理、余弦定理、三角形面积公式,考查了重要不等式,考查了两角和的正弦公式,考查了数学运算能力.18、(Ⅰ)(Ⅱ)【解题分析】
(Ⅰ)设点,求得向量的坐标,根据向量的数量积的运算,求得,即可求得答案.(Ⅱ)设M点的坐标为,把恒成立问题转化为恒成立,列出方程组,即可求解.【题目详解】(Ⅰ),,(Ⅱ)设M点的坐标为,则,,,.【题目点拨】本题主要考查了向量的坐标运算,以及向量的数量积的应用和恒成立问题的求解,其中解答中合理利用向量的坐标运算及向量的数量积的运算,以及转化等式的恒成立问题,列出相应的方程组是解答的关键,着重考查了推理与运算能力.19、(1);(2)见解析;(3)见解析【解题分析】
(1)求出圆心O到直线的距离,已知半径通过勾股定理即可算出弦长的一半,即可算出弦长。(2)设,直线的方程为,联立圆的方程通过韦达定理化简即可。(3)设点,根据,得,表示出,的关系,再联立直线和圆的方程得到,与k的关系,代入可解出k,最后再通过有两个交点判断即可求出k值。【题目详解】(1)由直线的斜率为3,可得直线的方程为所以圆心到直线的距离为所以(2)直线的方程为,代入圆可得方程设,则所以为定值,定值为0(3)设点,由,可得:,即,化得:由(*)及直线的方程可得:,代入上式可得:,可化为:求得:又由(*)解得:所以不符合题意,所以不存在符合条件的直线.【题目点拨】此题考查圆锥曲线,一般采用设而不求通过韦达定理表示,将需要求解的量用斜率k表示,起到消元的作用,计算相对复杂,属于较难题目。20、(Ⅰ)(Ⅱ)【解题分析】
(1)根据二倍角和诱导公式可得的值;(2)根据面积公式求,然后利用余弦定理求,最后根据正弦定理求的值.【题目详解】(1),,所以原式整理为,解得:(舍)或,;(2),解得,根据余弦定理,,,代入解得:,.【题目点拨】本题考查了根据正余弦定理解三角形,属于简单题.21、(1)证明见解析;(2);(3)证明见解析.【解题分析】
(1)由题意设圆心坐标为,可得半径为,求出圆的方程,分别令、,可得出点、的坐标,利用三角形的面积公式即可证明出结论成立;(2)由,知,利用两直线垂直的等价条件:斜率之积为,解方程可得,讨论的取值,求得圆心到直线的距离,即可得到所求圆的方程;(3)设,、,求得、的坐标,以及直线、的方程,联立圆的方程,利用韦达定理,结合,得出,设直线的方程为,代入圆的方程,利用韦达定理,可得、之间的关系,即可得出所求的定点.【题目详解】(1)由题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年西师新版选修3化学上册月考试卷
- 2025年浙教新版选修6地理上册阶段测试试卷
- 2025年苏教版七年级地理上册阶段测试试卷
- 2025年鲁科版九年级科学上册阶段测试试卷
- 2024版物业公司的购销合同
- 生物制造产业园项目可行性研究与风险评估报告
- 2025年冀教版七年级历史上册月考试卷含答案
- 2024年浙教版选修1生物下册阶段测试试卷
- 2025年粤人版四年级语文下册阶段测试试卷
- 2024离婚协议书起诉状
- 食材配送投标服务方案
- 建筑施工现场农民工维权告示牌
- 医疗医学医生护士工作PPT模板
- 口腔门诊规章制度.-口腔诊所12个规章制度
- 2022年版物理课程标准的特点探讨与实施建议
- 幼儿园班级安全教育活动计划表
- ppt模板:创意中国风古风水墨山水通用模板课件
- 纺纱学-ppt课件
- (高清版)严寒和寒冷地区居住建筑节能设计标准JGJ26-2018
- 项目经理绩效考核评分表
- .运维服务目录
评论
0/150
提交评论