版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省长治市太行中学2024届高一数学第二学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设变量满足约束条件,则目标函数的最大值为()A.3 B.4 C.18 D.402.在各项均为正数的等比数列中,公比,若,,,数列的前项和为,则取最大值时,的值为()A. B. C. D.或3.在△ABC中,若asinA+bsinB<csinC,则△ABC是()A.钝角三角形 B.直角三角形 C.锐角三角形 D.都有可能4.下列函数中,在区间上为增函数的是A. B.C. D.5.已知向量,若,则()A. B. C. D.6.若数列对任意满足,下面给出关于数列的四个命题:①可以是等差数列,②可以是等比数列;③可以既是等差又是等比数列;④可以既不是等差又不是等比数列;则上述命题中,正确的个数为()A.1个 B.2个 C.3个 D.4个7.集合A={x|-2<x<2},B={x|-1<x<3}那么A∪B=()A.{x|-2<x<-1} B.{x|-1<x<2}C.{x|-2<x<1} D.{x|-2<x<3}8.设,则下列不等式恒成立的是A. B.C. D.9.下列函数中,图象的一部分如图所示的是()A. B.C. D.10.函数的部分图像如图所示,则的值为()A.1 B.4 C.6 D.7二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量为单位向量,向量,且,则向量的夹角为__________.12.已知数列{an}的前n项和Sn=2n-3,则数列{an}的通项公式为________.13.方程组对应的增广矩阵为__________.14.已知数列,,若该数列是减数列,则实数的取值范围是__________.15.在正方体中,是的中点,连接、,则异面直线、所成角的正弦值为_______.16.在锐角△中,角所对应的边分别为,若,则角等于________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)求函数的最小正周期;(2)求函数的最小值和取得最小值时的取值.18.已知函数.(1)求函数的值域和单调减区间;(2)已知为的三个内角,且,,求的值.19.若不等式的解集为.(1)求证:;(2)求不等式的解集.20.如图,四棱锥中,是正三角形,四边形ABCD是矩形,且平面平面.(1)若点E是PC的中点,求证:平面BDE;(2)若点F在线段PA上,且,当三棱锥的体积为时,求实数的值.21.在中,角A,B,C的对边分别为a,b,c,,且.(1)求A;(2)求面积的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】不等式所表示的平面区域如下图所示,当所表示直线经过点时,有最大值考点:线性规划.2、D【解题分析】
利用等比数列的性质求出、的值,可求出和的值,利用等比数列的通项公式可求出,由此得出,并求出数列的前项和,然后求出,利用二次函数的性质求出当取最大值时对应的值.【题目详解】由题意可知,由等比数列的性质可得,解得,所以,解得,,,则数列为等差数列,,,,因此,当或时,取最大值,故选:D.【题目点拨】本题考查等比数列的性质,同时也考查了等差数列求和以及等差数列前项和的最值,在求解时将问题转化为二次函数的最值求解,考查方程与函数思想的应用,属于中等题.3、A【解题分析】
由正弦定理化已知条件为边的关系,然后由余弦定理可判断角的大小.【题目详解】∵asinA+bsinB<csinC,∴,∴,∴为钝角.故选A.【题目点拨】本题考查正弦定理与余弦定理,考查三角形形状的判断,属于基础题.4、A【解题分析】试题分析:对A,函数在上为增函数,符合要求;对B,在上为减函数,不符合题意;对C,为上的减函数,不符合题意;对D,在上为减函数,不符合题意.故选A.考点:函数的单调性,容易题.5、A【解题分析】
先根据向量的平行求出的值,再根据向量的加法运算求出答案.【题目详解】向量,,
解得,
∴,
故选A.【题目点拨】本题考查了向量的平行和向量的坐标运算,属于基础题.6、C【解题分析】
由已知可得an﹣an﹣1=2,或an=2an﹣1,结合等差数列和等比数列的定义,可得答案.【题目详解】∵数列{an}对任意n≥2(n∈N)满足(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,∴an﹣an﹣1=2,或an=2an﹣1,∴①{an}可以是公差为2的等差数列,正确;②{an}可以是公比为2的等比数列,正确;③若{an}既是等差又是等比数列,即此时公差为0,公比为1,由①②得,③错误;④由(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,an﹣an﹣1=2或an=2an﹣1,当数列为:1,3,6,8,16……得{an}既不是等差也不是等比数列,故④正确;故选C.【题目点拨】本题以命题的真假判断与应用为载体,考查了等差,等比数列的相关内容,属于中档题.7、D【解题分析】
根据并集定义计算.【题目详解】由题意A∪B={x|-2<x<3}.故选D.【题目点拨】本题考查集合的并集运算,属于基础题.8、C【解题分析】
利用不等式的性质,合理推理,即可求解,得到答案.【题目详解】因为,所以,所以A项不正确;因为,所以,,则,所以B不正确;因为,则,所以,又因为,则,所以等号不成立,所以C正确;由,所以,所以D错误.【题目点拨】本题主要考查了不等式的性质的应用,其中解答中熟记不等式的性质,合理运算是解答的关键,着重考查了推理与运算能力,属于基础题.9、D【解题分析】
设图中对应三角函数最小正周期为T,从图象看出,T=,所以函数的最小正周期为π,函数应为y=向左平移了个单位,即=,选D.10、C【解题分析】
根据是零点以及的纵坐标值,求解出的坐标值,然后进行数量积计算.【题目详解】令,且是第一个零点,则;令,是轴右侧第一个周期内的点,所以,则;则,,则.选C.【题目点拨】本题考查正切型函数以及坐标形式下向量数量积的计算,难度较易.当已知,则有.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】因为,所以,所以,所以,则.12、【解题分析】
利用来求的通项.【题目详解】,化简得到,填.【题目点拨】一般地,如果知道的前项和,那么我们可利用求其通项,注意验证时,(与有关的解析式)的值是否为,如果是,则,如果不是,则用分段函数表示.13、【解题分析】
根据增广矩阵的概念求解即可.【题目详解】方程组对应的增广矩阵为,故答案为:.【题目点拨】本题考查增广矩阵的概念,是基础题.14、【解题分析】
本题可以先通过得出的解析式,再得出的解析式,最后通过数列是递减数列得出实数的取值范围.【题目详解】,因为该数列是递减数列,所以即因为所以实数的取值范围是.【题目点拨】本题考察的是递减数列的性质,递减数列的后一项减去前一项的值一定是一个负值.15、【解题分析】
作出图形,设正方体的棱长为,取的中点,连接、,推导出,并证明出,可得出异面直线、所成的角为,并计算出、,可得出,进而得解.【题目详解】如下图所示,设正方体的棱长为,取的中点,连接、,为的中点,则,,且,为的中点,,,在正方体中,且,则四边形为平行四边形,,所以,异面直线、所成的角为,在中,,,.因此,异面直线、所成角的正弦值为.故答案为:.【题目点拨】本题考查异面直线所成角的正弦值的计算,考查计算能力,属于中等题.16、【解题分析】试题分析:利用正弦定理化简,得,因为,所以,因为为锐角,所以.考点:正弦定理的应用.【方法点晴】本题主要考查了正弦定理的应用、以及特殊角的三角函数值问题,其中解答中涉及到解三角形中的边角互化,转化为三角函数求值的应用,解答中熟练掌握正弦定理的变形,完成条件的边角互化是解答的关键,注重考查了分析问题和解答问题的能力,同时注意条件中锐角三角形,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当时,.【解题分析】
(1)利用二倍角公式将函数的解析式化简得,再利用周期公式可得出函数的最小正周期;(2)由可得出函数的最小值和对应的的值.【题目详解】(1),因此,函数的最小正周期为;(2)由(1)知,当,即当时,函数取到最小值.【题目点拨】本题考查利用二倍角公式化简,同时也考查了正弦型函数的周期和最值的求解,考查学生的化简运算能力,属于基础题.18、(1),;(2).【解题分析】
(1)将函数化简,利用三角函数的取值范围的单调性得到答案.(2)通过函数计算,,再计算代入数据得到答案.【题目详解】(1)∵且∴故所求值域为由得:所求减区间:;(2)∵是的三个内角,,∴∴又,即又∵,∴,故,故.【题目点拨】本题考查了三角函数的最值,单调性,角度的大小,意在考查学生对于三角函数公式性质的灵活运用.19、(1)证明见解析(2)【解题分析】
(1)由已知可得是的两根,利用韦达定理,化简可得结论;(2)结合(1)原不等式可化为,利用一元二次不等式的解法可得结果.【题目详解】(1)∵不等式的解集为∴是的两根,且∴∴,所以;(2)因为,,所以,即,又即,解集为【题目点拨】本题考查了求一元二次不等式的解法,是基础题目.若,则的解集是;的解集是.20、(Ⅰ)证明见解析;(Ⅱ)【解题分析】试题分析:(Ⅰ)连接AC,设AC∩BD=Q,又点E是PC的中点,则在△PAC中,中位线EQ∥PA,又EQ⊂平面BDE,PA⊄平面BDE.所以PA∥平面BDE;(Ⅱ)由平面PAB⊥平面ABCD,则PO⊥平面ABCD;作FM∥PO于AB上一点M,则FM⊥平面ABCD,进一步利用求得最后利用平行线分线段成比例求出λ的值试题解析:(Ⅰ)连接AC,设AC∩BD=Q,又点E是PC的中点,则在△PAC中,中位线EQ∥PA,又EQ⊂平面BDE,PA⊄平面BDE.所以PA∥平面BDE(Ⅱ)解:依据题意可得:PA=AB=PB=2,取AB中点O,所以PO⊥AB,且又平面PAB⊥平面ABCD,则PO⊥平面ABCD;作FM∥PO于AB上一点M,则FM⊥平面ABCD,因为四边形ABCD是矩形,所以BC⊥平面PAB,则△PBC为直角三角形,所以,则直角三角形△ABD的面积为,由FM∥PO得:考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积21、(1);(2)【解题分析】
(1)由题目条件a=1,可以将(1+b)(sinA-sinB)=(c-b)sinC中的1换成a,达到齐次化的目的,再用正余弦定理解决;(2)已知∠A,要求△ABC的面积,可用公式,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中课件大全教学课件
- 高中技术高二上学期期中考试试题
- 南京工业大学浦江学院《自动化仪表与过程控制》2023-2024学年第一学期期末试卷
- 网络培训课件教学课件
- doyoulikepears说课稿全英文
- 南京工业大学浦江学院《建筑工程造价》2022-2023学年第一学期期末试卷
- 《小手真干净》说课稿
- 南京工业大学浦江学院《概率论与数理统计(理工)》2022-2023学年第一学期期末试卷
- 南京工业大学《主题短片创作II》2023-2024学年第一学期期末试卷
- 租地合同安全协议书(2篇)
- JGT503-2016承插型盘扣式钢管支架构件
- SH∕T 3097-2017 石油化工静电接地设计规范
- 五年级上册道德与法治第6课《我们神圣的国土》第1课时说课稿
- 因为家属不在身边而要引产写的委托书
- 三年级上册数学易错题50道及答案【考点梳理】
- 蜜雪冰城内外部环境分析案例
- 初中英语语法大全:初中英语语法详解
- 经销商可以实施哪些策略来提供个性化和定制的购物体验
- 超星尔雅学习通《舞台人生走进戏剧艺术(中央戏剧学院)》2024章节测试答案
- 1.1 都匀毛尖茶概况
- 软件项目管理案例教程(第四版)课后习题答案
评论
0/150
提交评论