版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市高新第一中学2024届数学高一下期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,,则的面积是()A. B. C.或 D.或2.已知,都是实数,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知集合A={x︱x>-2}且,则集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.4.已知数列的通项为,我们把使乘积为整数的叫做“优数”,则在内的所有“优数”的和为()A.1024 B.2012 C.2026 D.20365.在等差数列中,,则()A.5 B.8 C.10 D.146.已知,,则()A. B. C. D.7.已知,则,,的大小顺序为()A. B. C. D.8.在等差数列中,,是方程的两个根,则的前14项和为()A.55 B.60 C.65 D.709.设变量满足约束条件:,则的最小值()A. B. C. D.10.已知向量,,若向量与的夹角为,则实数()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列满足,则_____.12.如图所示,在正三棱柱中,是的中点,,则异面直线与所成的角为____.13.如图,在内有一系列的正方形,它们的边长依次为,若,,则所有正方形的面积的和为___________.14.已知,,,若,则__________.15.已知样本数据的方差是1,如果有,那么数据,的方差为______.16.化简:______.(要求将结果写成最简形式)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,求的边上的中线所在的直线方程.18.已知数列的前n项和为(),且满足,().(1)求证是等差数列;(2)求数列的通项公式.19.在中,内角,,的对边分别为,,.已知,,且的面积为.(1)求的值;(2)求的周长.20.已知圆(为坐标原点),直线.(1)过直线上任意一点作圆的两条切线,切点分别为,求四边形面积的最小值.(2)过点的直线分别与圆交于点(不与重合),若,试问直线是否过定点?并说明理由.21.制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利分别为和,可能的最大亏损率分别为和.投资人计划投资金额不超过亿元,要求确保可能的资金亏损不超过亿元,问投资人对甲、乙两个项目各投资多少亿元,才能使可能的盈利最大?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
先根据正弦定理求出角,从而求出角,再根据三角形的面积公式进行求解即可.【题目详解】解:由,,,根据正弦定理得:,为三角形的内角,或,或在中,由,,或则面积或.故选C.【题目点拨】本题主要考查了正弦定理,三角形的面积公式以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键,属于中档题.2、D【解题分析】;,与没有包含关系,故为“既不充分也不必要条件”.3、D【解题分析】
A、B={x|x>2或x<-2},
∵集合A={x|x>-2},
∴A∪B={x|x≠-2}≠A,不合题意;
B、B={x|x≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合题意;
C、B={y|y≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合题意;
D、若B={-1,0,1,2,3},
∵集合A={x|x>-2},
∴A∪B={x|x>-2}=A,与题意相符,
故选D.4、C【解题分析】
根据优数的定义,结合对数运算,求得的范围,再用等比数列的前项和公式进行求和.【题目详解】根据优数的定义,令,则可得令,解得则在内的所有“优数”的和为:故选:C.【题目点拨】本题考查新定义问题,本质是考查对数的运算,等比数列前项和公式.5、B【解题分析】试题分析:设等差数列的公差为,由题设知,,所以,所以,故选B.考点:等差数列通项公式.6、D【解题分析】由题意可得,即,则,所以,即,也即,所以,应选答案D.点睛:解答本题的关键是借助题设中的条件获得,进而得到,求得,从而求出使得问题获解.7、B【解题分析】
由三角函数的辅助角公式、余弦函数的二倍角公式,正切函数的和角公式求得.【题目详解】故选B.【题目点拨】本题考查三角函数的辅助角公式、余弦函数的二倍角公式,正切函数的和角公式的三角恒等变换,属于基础题.8、D【解题分析】
根据根与系数之间的关系求出a5+a10,利用等差数列的前n项和公式及性质进行求解即可.【题目详解】∵,是方程的两个根,可得,∴.故选D.【题目点拨】本题主要考查等差数列的前n项和公式的应用,考查了等差数列的性质的运用,根据根与系数之间的关系建立方程关系是解决本题的关键.9、D【解题分析】
如图作出可行域,知可行域的顶点是A(-2,2)、B()及C(-2,-2),平移,当经过A时,的最小值为-8,故选D.10、B【解题分析】
根据坐标运算可求得与,从而得到与;利用向量夹角计算公式可构造方程求得结果.【题目详解】由题意得:,,,解得:本题正确选项:【题目点拨】本题考查利用向量数量积、模长和夹角求解参数值的问题,关键是能够通过坐标运算表示出向量和模长,进而利用向量夹角公式构造方程.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由递推公式逐步求出.【题目详解】.故答案为:【题目点拨】本题考查数列的递推公式,属于基础题.12、【解题分析】
要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角.【题目详解】取的中点E,连AE,,易证,∴为异面直线与所成角,设等边三角形边长为,易算得∴在∴故答案为【题目点拨】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求.13、【解题分析】
根据题意可知,可得,依次计算,,不难发现:边长依次为,,,,构成是公比为的等比数列,正方形的面积:依次,,不难发现:边长依次为,,,,正方形的面积构成是公比为的等比数列.利用无穷等比数列的和公式可得所有正方形的面积的和.【题目详解】根据题意可知,可得,依次计算,,是公比为的等比数列,正方形的面积:依次,,边长依次为,,,,正方形的面积构成是公比为的等比数列.所有正方形的面积的和.故答案为:【题目点拨】本题考查了无穷等比数列的和公式的运用.利用边长关系建立等式,找到公比是解题的关键.属于中档题.14、-3【解题分析】由可知,解得,15、1【解题分析】
利用方差的性质直接求解.【题目详解】根据题意,样本数据的平均数为,方差是1,则有,对于数据,其平均数为,其方差为,故答案为1.【题目点拨】本题考查方差的求法,考查方差的性质等基础知识,考查运算求解能力,是基础题.16、【解题分析】
结合诱导公式化简,再结合两角差正弦公式分析即可【题目详解】故答案为:【题目点拨】本题考查三角函数的化简,诱导公式的使用,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】
设边的中点,则由中点公式可得:,即点坐标为所以边上的中线先的斜率则由直线的斜截式方程可得:这就是所求的边上的中线所在的直线方程.18、(1)证明见解析;(2).【解题分析】
(1)当时,由代入,化简得出,由此可证明出数列是等差数列;(2)求出数列的通项公式,可得出,由可得出在时的表达式,再对是否满足进行检验,可得出数列的通项公式.【题目详解】(1)当时,,,即,,等式两边同时除以得,即,因此,数列是等差数列;(2)由(1)知,数列是以为首项,以为公差的等差数列,,则.,得.不适合.综上所述,.【题目点拨】本题考查等差数列的证明,同时也考查了数列通项公式的求解,解题的关键就是利用关系式进行计算,考查推理能力与计算能力,属于中等题.19、(1)(2)【解题分析】
(1)由和可得sinA和cosA,再由二倍角公式即得cos2A;(2)由面积公式,可得的值,再由和正弦定理可知b和c的值,用余弦定理可计算出a,即得的周长.【题目详解】解:(1)因为,所以,.因为,所以,,则.(2)由题意可得,的面积为,即.因为,所以,所以,.由余弦定理可得.故的周长为.【题目点拨】本题考查用正弦定理和余弦定理解三角形,以及二倍角公式,属于常考题型.20、(1)12;(2)过定点,理由见解析【解题分析】
(1)由,得过点的切线长,所以四边形的面积为,即可得到本题答案;(2)设直线的方程为,则直线的方程为.联立方程,消去,整理得,得,,所以,令,即可得到本题答案.【题目详解】(1)由题意可得圆心到直线的距离为,从而,则过点的切线长.故四边形的面积为,即四边形面积的最小值为12.(2)因为,所以直线与直线的斜率都存在,且不为0.设直线的方程为,则直线的方程为.联立方程,消去,整理得解得或,则.同理可得.所以.令,得,解得.取,可以证得,所以直线过定点.当时,轴,易知与均为正三角形,直线的方程为,也过定点.综上,直线过定点.【题目点拨】本题主要考查与椭圆相关的四边形面积的范围问题以及与椭圆有关的直线过定点问题,联立直线方程与椭圆方程,利用韦达定理是解决此类问题的常用方法.21、投资人用亿元投资甲项目,亿元投资乙项目,才能在确保亏损不超过亿元的前提下,使可能的盈利最大.【解题分析】
设投资人分别用亿元、亿元投资甲、乙两个项目,根据题意列出变量、所满足的约束条件和线性目标函数,利用平移直线的方法得出线性目标函数取得最大值时的最优解,并将最优解代入线性目标函数可得出盈利的最大值,从而解答该问题.【题目详解】设投资人分别用亿元、亿元投资甲、乙两个项目,由题意知,即,目标函数为.上述不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024网络安全防护技术合同
- 二零二五年度绿色环保安置房交易合同范本3篇
- 2025年度能源项目居间合作合同范本3篇
- 2025年房屋交换与回迁协议3篇
- 2024版中外合资企业运营管理合同书版B版
- 2024版政维护合同范本
- 中信证券2024年证券交易服务协议版A版
- 二零二五年度机场扩建项目吊车租赁合同及吊机操作资质要求3篇
- 事业单位2024版临时聘用人员协议样本版B版
- 二零二五年度专业摄影棚场地租赁服务协议2篇
- 老年人意外事件与与预防
- 预防艾滋病、梅毒和乙肝母婴传播转介服务制度
- 集装箱货运码头的火灾防范措施
- 《高速铁路客运安全与应急处理》课程标准
- 七年级数学上册专题1.14数轴与绝对值综合问题大题专练(重难点培优)-【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典(原卷版)【人教版】
- 社会保险职工增减表
- 小学语文低年级写话 鸽子
- 仁爱英语八年级上册词汇练习题全册
- 通用BIQS培训资料课件
- 报价单模板及范文(通用十二篇)
- 钣金部品质控制计划
评论
0/150
提交评论