2024届上海市浦东新区洋泾中学数学高一下期末检测模拟试题含解析_第1页
2024届上海市浦东新区洋泾中学数学高一下期末检测模拟试题含解析_第2页
2024届上海市浦东新区洋泾中学数学高一下期末检测模拟试题含解析_第3页
2024届上海市浦东新区洋泾中学数学高一下期末检测模拟试题含解析_第4页
2024届上海市浦东新区洋泾中学数学高一下期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市浦东新区洋泾中学数学高一下期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.从装有红球和绿球的口袋内任取2个球(其中红球和绿球都多于2个),那么互斥而不对立的两个事件是()A.至少有一个红球,至少有一个绿球B.恰有一个红球,恰有两个绿球C.至少有一个红球,都是红球D.至少有一个红球,都是绿球2.下列表达式正确的是()①,②若,则③若,则④若,则A.①② B.②③ C.①③ D.③④3.为了得到函数的图象,只需把函数的图象上的所有的点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位4.在中,角的对边分别为.若,,,则边的大小为()A.3 B.2 C. D.5.如图,是水平放置的的直观图,则的面积是()A.6 B. C. D.126.P是直线x+y+2=0上任意一点,点Q在圆x-22+yA.2 B.4-2 C.4+27.若点,关于直线l对称,则l的方程为()A. B.C. D.8.已知在中,两直角边,,是内一点,且,设,则()A. B. C.3 D.9.将正整数按第组含个数分组:那么所在的组数为()A. B. C. D.10.在正方体中,,分别为棱,的中点,则异面直线与所成的角为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如果事件A与事件B互斥,且,,则=.12.正项等比数列中,为数列的前n项和,,则的取值范围是____________.13.已知三棱锥P-ABC,PA⊥平面ABC,AC⊥BC,PA=2,AC=BC=1,则三棱锥P-ABC外接球的体积为__.14.函数的值域是________.15.过直线上一点作圆的两条切线,切点分别为,若的最大值为,则实数__________.16.若关于x的不等式ax2+bx+c<0的解集是{x|x<-2或x>-1},则关于x的不等式cx2+bx+a>0的解集是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?18.设的内角的对边分别为,且满足.(1)试判断的形状,并说明理由;(2)若,试求面积的最大值.19.在等差数列中,已知.(1)求通项;(2)求的前项和.20.各项均不相等的等差数列前项和为,已知,且成等比数列.(1)求数列的通项公式;(2)令,求数列的前项和.21.如图,在四棱锥中,平面,底面为菱形.(1)求证:平面;(2)若为的中点,,求证:平面平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由于从口袋中任取2个球有三个事件,恰有一个红球,恰有两个绿球,一红球和一绿球.所以恰有一个红球,恰有两个绿球是互斥而不对立的两个事件.因而应选B.2、D【解题分析】

根据基本不等式、不等式的性质即可【题目详解】对于①,.当,即时取,而,.即①不成立。对于②若,则,若,显然不成立。对于③若,则,则正确。对于④若,则,则,正确。所以选择D【题目点拨】本题主要考查了基本不等式以及不等式的性质,基本不等式一定要满足一正二定三相等。属于中等题。3、D【解题分析】

把系数2提取出来,即即可得结论.【题目详解】,因此要把图象向右平移个单位.故选D.【题目点拨】本题考查三角函数的图象平移变换.要注意平移变换是加减平移单位,即向右平移个单位得图象的解析式为而不是.4、A【解题分析】

直接利用余弦定理可得所求.【题目详解】因为,所以,解得或(舍).故选A.【题目点拨】本题主要考查了余弦定理在解三角形中的应用,考查了一元二次方程的解法,属于基础题.5、D【解题分析】由直观图画法规则,可得是一个直角三角形,直角边,,故选D.6、D【解题分析】

首先求出圆心到直线的距离与半径比较大小,得到直线与圆是相离的,根据圆上的点到直线的距离的最小值等于圆心到直线的距离减半径,求得结果.【题目详解】因为圆心(2,0)到直线x+y+2=0的距离为d=2+0+2所以直线x+y+2=0与圆(x-2)2所以PQ的最小值等于圆心到直线的距离减去半径,即PQmin故选D.【题目点拨】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,点到直线的距离公式,圆上的点到直线的距离的最小值问题,属于简单题目.7、A【解题分析】

根据A,B关于直线l对称,直线l经过AB中点且直线l和AB垂直,可得l的方程.【题目详解】由题意可知AB中点坐标是,,因为A,B关于直线l对称,所以直线l经过AB中点且直线l和AB垂直,所以直线l的斜率为,所以直线l的方程为,即,故选:A.【题目点拨】本题考查直线位置关系的应用,垂直关系利用斜率之积为求解,属于简单题.8、A【解题分析】分析:建立平面直角坐标系,分别写出B、C点坐标,由于∠DAB=60°,设D点坐标为(m,),由平面向量坐标表示,可求出λ和μ.详解:如图以A为原点,以AB所在的直线为x轴,以AC所在的直线为y轴建立平面直角坐标系,则B点坐标为(1,0),C点坐标为(0,2),因为∠DAB=60°,设D点坐标为(m,),=λ(1,0)+μ(0,2)=(λ,2μ)⇒λ=m,μ=,则.故选A.点睛:本题主要考察平面向量的坐标表示,根据条件建立平面直角坐标系,分别写出各点坐标,属于中档题.9、B【解题分析】

观察规律,看每一组的最后一个数与组数的关系,可知第n组最后一个数是2+3+4+…..+n+1=,然后再验证求解.【题目详解】观察规律,第一组最后一个数是2=2,第二组最后一个数是5=2+3,第三组最后一个数是9=2+3+4,……,依此,第n组最后一个数是2+3+4+…..+n+1=.当时,,所以所在的组数为63.故选:B【题目点拨】本题主要考查了数列的递推,还考查了推理论证的能力,属于中档题.10、A【解题分析】

如图做辅助线,正方体中,且,P,M为和中点,,则即为所求角,设边长即可求得.【题目详解】如图,取的中点,连接,,.因为为棱的中点,为的中点,所以,所以,则是异面直线与所成角的平面角.设,在中,,,则,即.【题目点拨】本题考查异面直线所成的角,解题关键在于构造包含异面直线所成角的三角形.二、填空题:本大题共6小题,每小题5分,共30分。11、0.5【解题分析】

表示事件A与事件B满足其中之一占整体的占比.所以根据互斥事件概率公式求解.【题目详解】【题目点拨】此题考查互斥事件概率公式,关键点在于理解清楚题目概率表示的实际含义,属于简单题目.12、【解题分析】

利用结合基本不等式求得的取值范围【题目详解】由题意知,,且,所以,当且仅当等号成立,所以.故答案为:【题目点拨】本题考查等比数列的前n项和及性质,利用性质结合基本不等式求最值是关键13、6【解题分析】

如图所示,取PB的中点O,∵PA⊥平面ABC,∴PA⊥AB,PA⊥BC,又BC⊥AC,PA∩AC=A,∴BC⊥平面PAC,∴BC⊥PC.∴OA=12PB,OC=12PB,∴OA=OB=OC=OP,故O为外接球的球心.又PA=2,AC=BC=1,∴AB=2,PB=6,∴外接球的半径R=∴V球=43πR3=4π3×(62)3=6点睛:空间几何体与球接、切问题的求解方法:(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.14、【解题分析】

求出函数在上的值域,根据原函数与反函数的关系即可求解.【题目详解】因为函数,当时是单调减函数当时,;当时,所以在上的值域为根据反函数的定义域就是原函数的值域可得函数的值域为故答案为:【题目点拨】本题求一个反三角函数的值域,着重考查了余弦函数的图像与性质和反函数的性质等知识,属于基础题.15、1或;【解题分析】

要使最大,则最小.【题目详解】圆的标准方程为,圆心为,半径为.∵若的最大值为,∴,解得或.故答案为1或.【题目点拨】本题考查直线与圆的位置关系,解题思路是平面上对圆的张角问题,显然在点固定时,圆外的点作圆的两条切线,这两条切线间的夹角是最大角,而当点离圆越近时,这个又越大.16、{x|-1<x<-}【解题分析】

观察两个不等式的系数间的关系,得出其根的关系,再由和的正负可得解.【题目详解】由已知可得:的两个根是和,且将方程两边同时除以,得,所以的两个根是和,且解集是故得解.【题目点拨】本题考查一元二次方程和一元二次不等式间的关系,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)选择C;(2)第4或第5年.【解题分析】

(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,设,则,.再利用分析函数的单调性,分析函数的图像得解.【题目详解】(1)由题意可知,A、B、C三种树木随着时间的增加,高度也在增加,6年末:A树木的高度为(米):B树木的高度为(米):C树木的高度为(米),所以选择C树木.(2)设为第年内树木生长的高度,则,所以,,.设,则,.令,因为在区间上是减函数,在区间上是增函数,所以当时,取得最小值,从而取得最大值,此时,解得,因为,,故的可能值为3或4,又,,即.因此,种植后第4或第5年内该树木生长最快.【题目点拨】本题主要考查等差数列和等比数列求和,考查函数的图像和性质的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于难题.18、(1);(2).【解题分析】试题分析:(1)由,利用正、余弦定理,得,化简整理即可证明:为直角三角形;(2)利用,,根据基本不等式可得:,即可求出面积的最大值.试题解析:解法1:(1)∵,由正、余弦定理,得,化简整理得:,∵,所以,故为直角三角形,且;(2)∵,∴,当且仅当时,上式等号成立,∴.故,即面积的最大值为.解法2(1)由已知:,又∵,,∴,而,∴,∴,故,∴为直角三角形.(2)由(1),∴.∵,∴,∴,令,∵,∴,∴.而在上单调递增,∴.19、(1),(2)【解题分析】

(1)设出等差数列的基本量,首项和公差,根据条件列出方程组,解出和,写出的通项.(2)由(1)中求出的基本量,根据等差数列的求和公式,写出【题目详解】设等差数列的首项为,公差为,,解得(2)由(1)可知,【题目点拨】本题考查等差数列基本量计算,等差数列通项和求和的求法,属于简单题.20、(1);(2)【解题分析】

(1)利用等差数列的通项公式和等比数列的性质,可得,则可得通项公式.(2)根据(1)的结论可得,然后利用裂项相消求和,可得结果.【题目详解】(1)因为各项均不相等,所以公差由等差数列通项公式且,所以,又成等比数列,所以,则,化简得,所以即可得即(2)由(1)可得化简可得由所以【题目

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论