2024届福建省福州市罗源第一中学数学高一下期末学业水平测试试题含解析_第1页
2024届福建省福州市罗源第一中学数学高一下期末学业水平测试试题含解析_第2页
2024届福建省福州市罗源第一中学数学高一下期末学业水平测试试题含解析_第3页
2024届福建省福州市罗源第一中学数学高一下期末学业水平测试试题含解析_第4页
2024届福建省福州市罗源第一中学数学高一下期末学业水平测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省福州市罗源第一中学数学高一下期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知在中,为的中点,,,点为边上的动点,则最小值为()A.2 B. C. D.-22.已知一组数据1,3,2,5,4,那么这组数据的方差为()A.2 B.3 C.2 D.33.将函数的图像先向右平移个单位,再将所得的图像上每个点的横坐标变为原来的倍,得到的图像,则的可能取值为()A. B. C. D.4.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于()A. B. C. D.5.执行如图所示的程序框图,若输入,则输出()A.13 B.15 C.40 D.466.在中,角的对边分别是,已知,则()A. B. C. D.或7.已知向量=(2,tan),=(1,-1),∥,则=()A.2 B.-3 C.-1 D.-38.已知数列为等比数列,且,则()A. B. C. D.9.已知,,,是球球面上的四个点,平面,,,则该球的表面积为()A. B. C. D.10.数列{an}满足a1=1,an+1=2an+1(n∈N+),那么a4的值为().A.4 B.8 C.15 D.31二、填空题:本大题共6小题,每小题5分,共30分。11.若角的终边经过点,则___________.12.若、分别是方程的两个根,则______.13.已知等差数列的公差为2,若成等比数列,则________.14.设是公差不为0的等差数列,且成等比数列,则的前10项和________.15.如图是一个三角形数表,记,,…,分别表示第行从左向右数的第1个数,第2个数,…,第个数,则当,时,______.16.设α为第二象限角,若sinα=35三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知首项为的等比数列不是递减数列,其前n项和为,且成等差数列.(1)求数列的通项公式;(2)设,求数列的最大项的值与最小项的值.18.设等差数列中,.(1)求数列的通项公式;(2)若等比数列满足,求数列的前项和.19.在锐角中,角,,的对边分别为,,,若.(1)求角;(2)若,则周长的取值范围.20.某建筑公司用8000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4000平方米的楼房.经初步估计得知,如果将楼房建为x(x≥12)层,则每平方米的平均建筑费用为Q(x)=3000+50x(单位:元).(1)求楼房每平方米的平均综合费用f(x)的解析式.(2)为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用最小值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)21.已知圆C的圆心为(1,1),直线与圆C相切.(1)求圆C的标准方程;(2)若直线过点(2,3),且被圆C所截得的弦长为2,求直线的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

由,结合投影几何意义,建立平面直角坐标系,结合向量数量积的定义及二次函数的性质即可求解.【题目详解】由,结合投影几何意义有:过点作的垂线,垂足落在的延长线上,且,以所在直线为轴,以中点为坐标原点,建立如图所示的平面直角坐标系,则设,其中则解析式是关于的二次函数,开口向上,对称轴时取得最小值,当时取得最小值故选:【题目点拨】本题考查向量方法解决几何最值问题,属于中等题型.2、C【解题分析】

先由平均数的计算公式计算出平均数,再根据方差的公式计算即可。【题目详解】由题可得x=所以这组数据的方差S2故答案选C【题目点拨】本题考查方差的定义:一般地设n个数据:x1,x2,3、D【解题分析】由题意结合辅助角公式有:,将函数的图像先向右平移个单位,所得函数的解析式为:,再将所得的图像上每个点的横坐标变为原来的倍,所得函数的解析式为:,而,据此可得:,据此可得:.本题选择D选项.4、D【解题分析】

在三角形中,利用正弦定理求得,然后在三角形中求得.【题目详解】在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得=,所以BC=.在Rt△ABC中,AB=BCtan∠ACB=15×=15.故选:D【题目点拨】本小题主要考查正弦定理解三角形,考查解直角三角形,属于基础题.5、A【解题分析】

模拟程序运行即可.【题目详解】程序运行循环时,变量值为,不满足;,不满足;,满足,结束循环,输出.故选A.【题目点拨】本题考查程序框图,考查循环结构.解题时可模拟程序运行,观察变量值的变化,判断是否符合循环条件即可.6、B【解题分析】

由已知知,所以B<A=,由正弦定理得,==,所以,故选B考点:正弦定理7、B【解题分析】

通过向量平行得到的值,再利用和差公式计算【题目详解】向量=(2,tan),=(1,-1),∥故答案选B【题目点拨】本题考查了向量的平行,三角函数和差公式,意在考查学生的计算能力.8、A【解题分析】

根据等比数列性质知:,得到答案.【题目详解】已知数列为等比数列故答案选A【题目点拨】本题考查了等比数列的性质,属于简单题.9、B【解题分析】

根据截面法,作出球心O与外接圆圆心所在截面,利用平行四边形和勾股定理可求得球半径,从而得到结果.【题目详解】如图,的外接圆圆心E为BC的中点,设球心为O,连接OE,OP,OA,D为PA的中点,连接OD.根据直角三角形的性质可得,且平面,则//,由为等腰三角形可得,又,所以//,则四边形ODAE是矩形,所以=,而,中,根据勾股定理可得,所以该球的表面积为.所以本题答案为B.【题目点拨】本题考查求三棱锥外接球的表面积问题,几何体的外接球、内切球问题,关键是球心位置的确定,必要时需把球的半径放置在可解的几何图形中,如果球心的位置不易确定,则可以把该几何体补成规则的几何体,便于球心位置和球的半径的确定.10、C【解题分析】试题分析:,,,故选C.考点:数列的递推公式二、填空题:本大题共6小题,每小题5分,共30分。11、3【解题分析】

直接根据任意角三角函数的定义求解,再利用两角和的正切展开代入求解即可【题目详解】由任意角三角函数的定义可得:.则故答案为3【题目点拨】本题主要考查了任意角三角函数的定义和两角和的正切计算,熟记公式准确计算是关键,属于基础题.12、【解题分析】

利用韦达定理可求出和的值,然后利用两角和的正切公式可计算出的值.【题目详解】由韦达定理得,,因此,.故答案为:.【题目点拨】本题考查利用两角和的正切公式求值,同时也考查了一元二次方程根与系数的关系,考查计算能力,属于基础题.13、【解题分析】

利用等差数列{an}的公差为1,a1,a3,a4成等比数列,求出a1,即可求出a1.【题目详解】∵等差数列{an}的公差为1,a1,a3,a4成等比数列,

∴(a1+4)1=a1(a1+2),

∴a1=-8,

∴a1=-2.

故答案为-2..【题目点拨】本题考查等比数列的性质,考查等差数列的通项,考查学生的计算能力,属基础题..14、【解题分析】

利用等差数列的通项公式和等比数列的性质求出公差,由此能求出【题目详解】因为是公差不为0的等差数列,且成等比数列所以,即解得或(舍)所以故答案为:【题目点拨】本题考查等差数列前10项和的求法,解题时要认真审题,注意等比数列的性质合理运用.15、【解题分析】

由图表,利用归纳法,得出,再利用叠加法,即可求解数列的通项公式.【题目详解】由图表,可得,,,,,可归纳为,利用叠加法可得:,故答案为.【题目点拨】本题主要考查了归纳推理的应用,以及数列的叠加法的应用,其中解答中根据图表,利用归纳法,求得数列的递推关系式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.16、-【解题分析】

先求出cosα,再利用二倍角公式求sin2α【题目详解】因为α为第二象限角,若sinα=所以cosα=所以sin2α故答案为-【题目点拨】本题主要考查同角三角函数的平方关系,考查二倍角的正弦公式,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最大项的值为,最小项的值为【解题分析】试题分析:(1)根据成等差数列,利用等比数列通项公式和前项和公式,展开.利用等比数列不是递减数列,可得值,进而求通项.(2)首先根据(1)得到,进而得到,但是等比数列的公比是负数,所以分两种情况:当的当n为奇数时,随n的增大而减小,所以;当n为偶数时,随n的增大而增大,所以,然后可判断最值.试题解析:(1)设的公比为q.由成等差数列,得.即,则.又不是递减数列且,所以.故.(2)由(1)利用等比数列的前项和公式,可得得当n为奇数时,随n的增大而减小,所以,故.当n为偶数时,随n的增大而增大,所以,故.综上,对于,总有,所以数列最大项的值为,最小值的值为.考点:等差中项,等比通项公式;数列增减性的讨论求最值.18、(1)(2)【解题分析】

(1)求出公差,由公式得通项公式;(2)由(1)求出,计算公比,再由等比数列前项和公式得和.【题目详解】(1)在等差数列中,,故设的公差为,则,即,所以,所以.(2)设数列的公比为,则,所以.【题目点拨】本题考查等差数列与等比数列的基本量法.求出数列的首项和公差(或公比),则数列的通项公式与前项和随之而定.19、(1)(2)【解题分析】

(1)利用切化成弦和余弦定理对等式进行化简,得角的正弦值;(2)利用成正弦定理把边化成角,从而实现的周长用角B的三角函数进行表示,即周长,再根据锐角三角形中角,求得函数值域.【题目详解】(1)由,得到,又,所以.(2),,设周长为,由正弦定理知,由合分比定理知,即,,即.又因为为锐角三角形,所以.,周长.【题目点拨】对运动变化问题,首先要明确变化的量是什么?或者选定什么量为变量?然后,利用函数与方程思想,把所求的目标表示成关于变量的函数,再研究函数性质进行问题求解.20、(1);(2)该楼房应建为20层,每平方米的平均综合费用最小值为5000元.【解题分析】【试题分析】先建立楼房每平方米的平均综合费用函数,再应基本不等式求其最小值及取得极小值时:解:设楼房每平方米的平均综合费用,,当且仅当时,等号取到.所以,当时,最小值为5000元.21、(1);(2)或.【解题分析】

(1)利用点到直线的距离可得:圆心到直线的距离.根据直线与圆相切,可得.即可得出圆的标准方程.(2)①当直线的斜率存在时,设直线的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论