




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市罗平县一中2024届高一数学第二学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知在中,为的中点,,,点为边上的动点,则最小值为()A.2 B. C. D.-22.已知水平放置的是按“斜二测画法”得到如图所示的直观图,其中,,那么原中的大小是().A. B. C. D.3.如图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是()A. B.C. D.4.设变量满足约束条件,则目标函数的最大值为()A.3 B.4 C.18 D.405.在中,,,成等差数列,,则的形状为()A.直角三角形 B.等腰直角三角形C.等腰三角形 D.等边三角形6.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得250粒内夹谷30粒,则这批米内夹谷约为多少石?A.180 B.160 C.90 D.3607.数列的通项,其前项之和为,则在平面直角坐标系中,直线在轴上的截距为()A.-10 B.-9 C.10 D.98.已知是边长为4的等边三角形,为平面内一点,则的最小值是()A. B. C. D.9.在直角梯形中,,,,,,则梯形绕着旋转而成的几何体的体积为()A. B. C. D.10.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入分别为14,18,则输出的()A.0 B.2 C.4 D.14二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足,,则_______;_______.12.在中,,则_____________13.已知x、y、z∈R,且,则的最小值为.14.直线的倾斜角为_____________15.已知,,,则在方向上的投影为__________.16.函数的最大值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,,设函数.(1)求的最小正周期;(2)求在上的最大值和最小值.18.某科研课题组通过一款手机APP软件,调查了某市1000名跑步爱好者平均每周的跑步量(简称“周跑量”),得到如下的频数分布表周跑量(km/周)人数100120130180220150603010(1)在答题卡上补全该市1000名跑步爱好者周跑量的频率分布直方图:注:请先用铅笔画,确定后再用黑色水笔描黑(2)根据以上图表数据计算得样本的平均数为,试求样本的中位数(保留一位小数),并用平均数、中位数等数字特征估计该市跑步爱好者周跑量的分布特点(3)根据跑步爱好者的周跑量,将跑步爱好者分成以下三类,不同类别的跑者购买的装备的价格不一样,如下表:周跑量小于20公里20公里到40公里不小于40公里类别休闲跑者核心跑者精英跑者装备价格(单位:元)250040004500根据以上数据,估计该市每位跑步爱好者购买装备,平均需要花费多少元?19.已知函数,且.(1)求常数及的最大值;(2)当时,求的单调递增区间.20.(1)己知直线,求与直线l平行且到直线l距离为2的直线方程;(2)若关于x的不等式的解集是的子集,求实数a的取值范围.21.某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付款方式:第一种,每天支付38圆;第二种,第一天付4元,第二天付8元,第三天付12元,以此类推:第三种,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),你会选择哪种方式领取报酬呢?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
由,结合投影几何意义,建立平面直角坐标系,结合向量数量积的定义及二次函数的性质即可求解.【题目详解】由,结合投影几何意义有:过点作的垂线,垂足落在的延长线上,且,以所在直线为轴,以中点为坐标原点,建立如图所示的平面直角坐标系,则设,其中则解析式是关于的二次函数,开口向上,对称轴时取得最小值,当时取得最小值故选:【题目点拨】本题考查向量方法解决几何最值问题,属于中等题型.2、C【解题分析】
根据斜二测画法还原在直角坐标系的图形,进而分析出的形状,可得结论.【题目详解】如图:根据斜二测画法可得:,故原是一个等边三角形故选【题目点拨】本题是一道判定三角形形状的题目,主要考查了平面图形的直观图,考查了数形结合的思想3、A【解题分析】
根据线性回归模型建立方法,分析选项,找出散点比较分散且无任何规律的选项可得答案.【题目详解】根据题意,适合用线性回归拟合其中两个变量的散点图必须散点分布比较集中,且大体接近某一条直线,分析选项可得A选项的散点图杂乱无章,最不符合条件.故选A【题目点拨】本题考查了统计案例散点图,属于基础题.4、C【解题分析】不等式所表示的平面区域如下图所示,当所表示直线经过点时,有最大值考点:线性规划.5、B【解题分析】
根据等差中项以及余弦定理即可.【题目详解】因为,,成等差数列,得为直角三角形为等腰直角三角形,所以选择B【题目点拨】本题主要考查了等差中项和余弦定理,若为等差数列,则,属于基础题.6、A【解题分析】
根据数得250粒内夹谷30粒,根据比例,即可求得结论。【题目详解】设批米内夹谷约为x石,则,解得:选A。【题目点拨】此题考查简单随机抽样,根据部分的比重计算整体值。7、B【解题分析】试题分析:因为数列的通项公式为,所以其前项和为,令,所以直线方程为,令,解得,即直线在轴上的截距为,故选B.考点:数列求和及直线方程.8、A【解题分析】
建立平面直角坐标系,表示出点的坐标,利用向量坐标运算和平面向量的数量积的运算,求得最小值,即可求解.【题目详解】由题意,以中点为坐标原点,建立如图所示的坐标系,则,设,则,所以,所以当时,取得最小值为,故选A.【题目点拨】本题主要考查了平面向量数量积的应用问题,根据条件建立坐标系,利用坐标法是解答的关键,着重考查了推理与运算能力,属于基础题.9、A【解题分析】
易得梯形绕着旋转而成的几何体为圆台,再根据圆台的体积公式求解即可.【题目详解】易得梯形绕着旋转而成的几何体为圆台,圆台的高,上底面圆半径,下底面圆半径.故该圆台的体积故选:A【题目点拨】本题主要考查了旋转体中圆台的体积公式,属于基础题.10、B【解题分析】由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=1,由a<b,则b变为4﹣1=1,由a=b=1,则输出的a=1.故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
令代入可求得;方程两边取倒数,构造出等差数列,即可得答案.【题目详解】令,则;∵,∴数列为等差数列,∴,∴.故答案为:;.【题目点拨】本题考查数列的递推关系求通项,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意两边取倒数,构造新等差数列的方法.12、【解题分析】
先由正弦定理得到,再由余弦定理求得的值.【题目详解】由,结合正弦定理可得,故设,,(),由余弦定理可得,故.【题目点拨】本题考查了正弦定理和余弦定理的运用,属于基础题.13、【解题分析】试题分析:由柯西不等式,,因为.所以,当且仅当,即时取等号.所以的最小值为.考点:柯西不等式14、【解题分析】
先求得直线的斜率,由此求得对应的倾斜角.【题目详解】依题意可知,直线的斜率为,故倾斜角为.故答案为:【题目点拨】本小题主要考查直线斜率和倾斜角的计算,属于基础题.15、【解题分析】
根据数量积的几何意义计算.【题目详解】在方向上的投影为.故答案为:1.【题目点拨】本题考查向量的投影,掌握投影的概念是解题基础.16、【解题分析】
设,,,则,,可得,再根据正弦函数的定义域和值域,求得函数的最值.【题目详解】解:函数,设,,则,,,,故当,即时,函数,故故答案为:;【题目点拨】本题主要考查求函数的值域,正弦函数的定义域和值域,体现了转化的数学思想,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)时,取最小值;时,取最大值1.【解题分析】
试题分析:(1)根据向量数量积、二倍角公式及配角公式得,再根据正弦函数性质得.(2)先根据得,,再根据正弦函数性质得最大值和最小值.试题解析:(1),最小正周期为.(2)当时,,由图象可知时单调递增,时单调递减,所以当,即时,取最小值;当,即时,取最大值1.18、(1)见解析;(2)中位数为29.2,分布特点见解析;(3)3720元【解题分析】
(1)根据频数和频率之间的关系计算,即可得到答案;(2)根据频率分布直方图利用中位数两边频率相等,列方程求出中位数的值,进而得出结论;(3)根据频率分布直方图求出休闲跑者,核心跑者,精英跑者分别人数,进而求出平均值.【题目详解】(1)补全该市1000名跑步爱好者周跑量的频率分布直方图,如下:(2)中位数的估计值:由,所以中位数位于区间中,设中位数为,则,解得,因为,所以估计该市跑步爱好者多数人的周跑量多于样本的平均数.(3)依题意可知,休闲跑者共有人,核心跑者人,精英跑者人,所以该市每位跑步爱好者购买装备,平均需要元.【题目点拨】本题主要考查了平均数、中位数的求法,以及频率分布直方图的性质等相应知识的综合应用,着重考查了化简能力,推理计算能力,以及数形结合思想的应用,属于基础题.19、(1),(2)递增区间为.【解题分析】
(1)由二倍角公式降幂,再由求出,然后由两角和的余弦公式化函数为一个角的一个三角函数形式,结合余弦函数单调性可得最大值;(2)由(1)结合余弦函数性质可得增区间.【题目详解】(1),由得,,即.∴,当时,即时,.(2)由,得,又,所以,所以递增区间为.【题目点拨】本题考查二倍角公式,考查两角和的余弦公式,考查余弦函数的性质.三角函数问题一般都要由三角恒等变换化为一个角的一个三角函数形式,然后利用正弦函数或余弦函数性质求解.20、(1)或;(2)【解题分析】
(1)根据两直线平行,设所求直线为,利用两平行线间的距离公式,求出的值,从而得到答案;(2)解一元二次不等式,然后按,,进行分类讨论,得到答案.【题目详解】(1)设与直线平行的直线方程为,所以两平行线间的距离为,解得或,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于数字化双胞胎的商业地产项目伦理问题探讨
- 教育内容数字化的策略与实践探讨
- 教育引领健康变革数字医疗与儿童呼吸系统疾病教学探讨
- 情韵与美育:大学英语教学的双驱动力探究
- 微夹持系统的多维度设计与仿真研究:原理、方法与应用
- 幼儿园亲子活动中家长参与现状、问题与提升路径研究
- 小学社区服务类综合实践活动课程的探索与实践-以Y市H小学为例
- 小学低段课堂行为规范的实践与探索-以成都市D小学为例
- 审美视阈下小学语文朗读教学:意蕴、现状与提升路径
- 2025年医保知识考试题库及答案-医保信息化平台操作医保政策解读试题试卷
- 小学生空间观念的培养
- DB32T-中医护理门诊建设规范编制说明
- 2023年高考真题-化学(江苏卷) 含解析
- 2024年中考英语试题分类汇编:短文填空之选词填空(解析版)
- 广东省广州市2024年小升初语文真题试卷及答案
- GB/T 44186-2024固定式压缩空气泡沫灭火系统
- 国家开放大学本科《理工英语3》一平台机考总题库2025珍藏版
- 2024年黑龙江省齐齐哈尔市中考英语试卷真题(含答案解析)
- JC∕T 2533-2019 预拌混凝土企业安全生产规范
- DL∕T 5210.2-2018 电力建设施工质量验收规程 第2部分:锅炉机组
- 大数据与人工智能营销智慧树知到期末考试答案章节答案2024年南昌大学
评论
0/150
提交评论