江西省宜春市丰城市第九中学2024届数学高一下期末经典试题含解析_第1页
江西省宜春市丰城市第九中学2024届数学高一下期末经典试题含解析_第2页
江西省宜春市丰城市第九中学2024届数学高一下期末经典试题含解析_第3页
江西省宜春市丰城市第九中学2024届数学高一下期末经典试题含解析_第4页
江西省宜春市丰城市第九中学2024届数学高一下期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省宜春市丰城市第九中学2024届数学高一下期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个不透明袋中装有大小、质地完成相同的四个球,四个球上分别标有数字2,3,4,6,现从中随机选取三个球,则所选三个球上的数字能构成等差数列(如:、、成等差数列,满足)的概率是()A. B. C. D.2.某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距抽取样本,将全体会员随机按1~200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第1组至第3组抽出的号码依次是()A.3,8,13 B.2,7,12 C.3,9,15 D.2,6,123.若两个正实数,满足,且不等式有解,则实数的取值范围是()A. B. C. D.4.若,则函数的最小值是()A. B. C. D.5.已知等边三角形ABC的边长为1,,那么().A.3 B.-3 C. D.6.《九章算术》中,将四个面均为直角三角形的三棱锥称为鳖臑,若三棱锥为鳖臑,其中平面,,三棱锥的四个顶点都在球的球面上,则该球的体积是()A. B. C. D.7.若,则的坐标是()A. B. C. D.8.已知直线与直线平行,则实数m的值为()A.3 B.1 C.-3或1 D.-1或39.在中,角对应的边分别是,已知,的面积为,则外接圆的直径为()A. B. C. D.10.已知扇形的面积为2cm2,扇形圆心角θ的弧度数是4,则扇形的周长为()A.2cm B.4cm C.6cm D.8cm二、填空题:本大题共6小题,每小题5分,共30分。11.若角的终边经过点,则实数的值为_______.12._______________。13.已知,,则当最大时,________.14.已知满足约束条件,则的最大值为__15.一个圆锥的侧面积为,底面积为,则该圆锥的体积为________.16.光线从点射向y轴,经过y轴反射后过点,则反射光线所在的直线方程是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥中,侧面与侧面均为边长为2的等边三角形,,为中点.(1)证明:;(2)求点到平面的距离.18.2019年,河北等8省公布了高考改革综合方案将采取“3+1+2”模式,即语文、数学、英语必考,然后考生先在物理、历史中选择1门,再在思想政治、地理、化学、生物中选择2门.为了更好进行生涯规划,甲同学对高一一年来的七次考试成绩进行统计分析,其中物理、历史成绩的茎叶图如图所示.(1)若甲同学随机选择3门功课,求他选到物理、地理两门功课的概率;(2)试根据茎叶图分析甲同学应在物理和历史中选择哪一门学科?并说明理由;(3)甲同学发现,其物理考试成绩(分)与班级平均分(分)具有线性相关关系,统计数据如下表所示,试求当班级平均分为50分时,其物理考试成绩.参考数据:,,,.参考公式:,,(计算时精确到).19.在平面直角坐标系中,直线截以坐标原点为圆心的圆所得的弦长为.(1)求圆的方程;(2)若直线与圆切于第一象限,且与坐标轴交于点,,当时,求直线的方程;(3)设,是圆上任意两点,点关于轴的对称点为,若直线,分别交轴于点和,问是否为定值?若是,请求出该定值;若不是,请说明理由.20.已知函数的图象与轴正半轴的交点为,.(1)求数列的通项公式;(2)令(为正整数),问是否存在非零整数,使得对任意正整数,都有?若存在,求出的值,若不存在,请说明理由.21.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

用列举法写出所有基本事件,确定成等差数列含有的基本事件,计数后可得概率.【题目详解】任取3球,结果有234,236,246,346共4种,其中234,246是成等差数列的2个基本事件,∴所求概率为.故选:B.【题目点拨】本题考查古典概型,解题时可用列举法列出所有的基本事件.2、B【解题分析】

根据系统抽样原理求出抽样间距,再根据第5组抽出的号码求出第1组抽出的号码,即可得出第2组、第3组抽取的号码.【题目详解】根据系统抽样原理知,抽样间距为200÷40=5,

当第5组抽出的号码为22时,即22=4×5+2,

所以第1组至第3组抽出的号码依次是2,7,1.

故选:B.【题目点拨】本题考查了系统抽样方法的应用问题,是基础题.3、D【解题分析】

利用基本不等式求得的最小值,根据不等式存在性问题,解一元二次不等式求得的取值范围.【题目详解】由于,而不等式有解,所以,即,解得或.故选:D【题目点拨】本小题主要考查利用基本不等式求最小值,考查不等式存在性问题的求解,考查一元二次不等式的解法,属于中档题.4、B【解题分析】

直接用均值不等式求最小值.【题目详解】当且仅当,即时,取等号.故选:B【题目点拨】本题考查利用均值不等式求函数最小值,属于基础题.5、D【解题分析】

利用向量的数量积即可求解.【题目详解】解析:.故选:D【题目点拨】本题考查了向量的数量积,注意向量夹角的定义,属于基础题.6、A【解题分析】

根据三棱锥的结构特征和线面位置关系,得到中点为三棱锥的外接球的球心,求得球的半径,利用球的体积公式,即可求解.【题目详解】由题意,如图所示,因为,且为直角三角形,所以,又因为平面,所以,则平面,得.又由,所以中点为三棱锥的外接球的球心,则外接球的半径.所以该球的体积是.故选A.【题目点拨】本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)利用球的截面的性质,根据勾股定理列出方程求解球的半径.7、C【解题分析】

,.故选C.8、B【解题分析】

两直线平行应该满足,利用系数关系及可解得m.【题目详解】两直线平行,可得(舍去).选B.【题目点拨】两直线平行的一般式对应关系为:,若是已知斜率,则有,截距不相等.9、D【解题分析】

根据三角形面积公式求得;利用余弦定理求得;根据正弦定理求得结果.【题目详解】由题意得:,解得:由余弦定理得:由正弦定理得外接圆的直径为:本题正确选项:【题目点拨】本题考查正弦定理、余弦定理、三角形面积公式的综合应用问题,考查学生对于基础公式和定理的掌握情况.10、C【解题分析】设扇形的半径为R,则R2θ=2,∴R2=1R=1,∴扇形的周长为2R+θ·R=2+4=6(cm).二、填空题:本大题共6小题,每小题5分,共30分。11、.【解题分析】

利用三角函数的定义以及诱导公式求出的值.【题目详解】由诱导公式得,另一方面,由三角函数的定义得,解得,故答案为.【题目点拨】本题考查诱导公式与三角函数的定义,解题时要充分利用诱导公式求特殊角的三角函数值,并利用三角函数的定义求参数的值,考查计算能力,属于基础题.12、【解题分析】

本题首先可根据同角三角函数关系式化简得出,然后根据两角差的正弦公式化简得出,最后根据二倍角公式以及三角函数诱导公式即可得出结果。【题目详解】,故答案为【题目点拨】本题考查根据三角函数相关公式进行化简求值,考查到的公式有、、以及,考查化归与转化思想,是中档题。13、【解题分析】

根据正切的和角公式,将用的函数表示出来,利用均值不等式求最值,求得取得最大值的,再用倍角公式即可求解.【题目详解】故可得则当且仅当,即时,此时有故答案为:.【题目点拨】本题考查正切的和角公式,以及倍角公式,涉及均值不等式的使用.14、【解题分析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【题目详解】由约束条件作出可行域,如图所示,化目标函数为,由图可得,当直线过时,直线在轴上的截距最大,所以有最大值为.故答案为1.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.15、【解题分析】

设圆锥的底面半径为,母线长为,由圆锥的侧面积、圆面积公式列出方程组求解,代入圆锥的体积公式求解.【题目详解】设圆锥的底面半径为,母线长为,其侧面积为,底面积为,则,解得,,∴高===,∴==.故答案为:.【题目点拨】本题考查圆锥的体积的求法,考查圆锥的侧面积、底面积、体积公式等基础知识,考查运算求解能力,属于基础题.16、(或写成)【解题分析】

光线从点射向y轴,即反射光线反向延长线经过关于y轴的对称点,则反射光线通过和两个点,设直线方程求解即可。【题目详解】由题意可知,所求直线方程经过点关于y轴的对称点为,则所求直线方程为,即.【题目点拨】此题的关键点在于物理学上光线的反射光线和入射光线关于镜面对称,属于基础题目。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解题分析】

(1)由题设AB=AC=SB=SC=SA,连结OA,推导出SO⊥BC,SO⊥AO,由此能证明SO⊥平面ABC;(2)设点B到平面SAC的距离为h,由VS﹣BAC=VB﹣SAC,能求出点B到平面SAC的距离.【题目详解】(1)由题设,连结,为等腰直角三角形,所以,且,又为等腰三角形,故,且,从而.所以为直角三角形,.又.所以平面,故AC⊥SO.(2)设B到平面SAC的距离为,则由(Ⅰ)知:三棱锥即∵为等腰直角三角形,且腰长为2.∴∴∴△SAC的面积为=△ABC面积为,∴,∴B到平面SAC的距离为【题目点拨】本题考查线面垂直的证明,考查点到平面距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查函数与方程思想、数形结合思想,是中档题.18、(1);(2)见解析;(3)见解析【解题分析】

(1)列出基本事件的所有情况,然后再列出满足条件的所有情况,利用古典概率公式即可得到答案.(2)计算平均值和方差,从而比较甲同学应在物理和历史中选择哪一门学科;(3)先计算和,然后通过公式计算出线性回归方程,然后代入平均值50即可得到答案.【题目详解】(1)记物理、历史分别为,思想政治、地理、化学、生物分别为,由题意可知考生选择的情形有,,,,,,,,,,,,共12种他选到物理、地理两门功课的满情形有,共3种甲同学选到物理、地理两门功课的概率为(2)物理成绩的平均分为历史成绩的平均分为由茎叶图可知物理成绩的方差历史成绩的方差故从平均分来看,选择物理历史学科均可以;从方差的稳定性来看,应选择物理学科;从最高分的情况来看,应选择历史学科(答对一点即可)(3),,关于的回归方程为当时,,当班级平均分为50分时,其物理考试成绩为73分【题目点拨】本题主要考查古典概型,统计数的相关含义,线性回归方程的计算,意在考查学生的阅读理解能力,计算能力和分析能力,难度不大.19、(1);(2);(3)见解析【解题分析】

(1)利用点到直线距离公式,可以求出弦心距,根据垂径定理结合勾股定理,可以求出圆的半径,进而可以求出圆的方程;(2)设出直线的截距式方程,利用圆的切线性质,得到一个方程,结合已知,又得到一个方程,两个方程联立,解方程组,即可求出直线直线的方程;(3)设,,则,,,分别求出直线与轴交点坐标、直线与轴交点坐标,求出的表达式,通过计算可得.【题目详解】(1)因为点到直线的距离为,所以圆的半径为,故圆的方程为.(2)设直线的方程为,即,由直线与圆相切,得,①.②由①②解得,此时直线的方程为.(3)设,,则,,,直线与轴交点坐标为,,直线与轴交点坐标为,,,为定值2.【题目点拨】本题考查了圆的垂径定理、圆的切线性质、勾股定理,考查了求直线方程,考查了数学运算能力.20、(1);(2)存在,.【解题分析】

(1)把点A带入即可(2)根据(1)的计算出、,再解不等式即可【题目详解】(1)设,得,.所以;(2),若存在,满足恒成立即:,恒成立当为奇数时,当为偶数时,所以,故:.【题目点拨】本题考查了数列通项的求法,以及不等式恒成立的问题,不等式恒成立是一个难点,也是高考中的常考点,本题属于较难的题。21、(1)选择C;(2)第4或第5年.【解题分析】

(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论