2024届河南省豫南六市数学高一下期末检测模拟试题含解析_第1页
2024届河南省豫南六市数学高一下期末检测模拟试题含解析_第2页
2024届河南省豫南六市数学高一下期末检测模拟试题含解析_第3页
2024届河南省豫南六市数学高一下期末检测模拟试题含解析_第4页
2024届河南省豫南六市数学高一下期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省豫南六市数学高一下期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对于函数,在使成立的所有常数中,我们把的最大值称为函数的“下确界”.若函数,的“下确界”为,则的取值范围是()A. B. C. D.2.设,则下列不等式中正确的是()A. B.C. D.3.在三棱柱中,已知,,此三棱柱各个顶点都在一个球面上,则球的体积为().A. B. C. D.4.若直线与直线平行,则实数A.0 B.1 C. D.5.下列函数中,既是偶函数又在区间上单调递减的函数是()A. B. C. D.6.某公司为激励创新,计划逐年加大研发奖金投入,若该公司年全年投入研发奖金万元,在此基础上,每年投入的研发奖金比上一年增长,则该公司全年投入的研发奖金开始超过万元的年份是()(参考数据:,,)A.年 B.年 C.年 D.年7.已知向量,则与().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向8.已知平面向量,,若与同向,则实数的值是()A. B. C. D.9.用数学归纳法时,从“k到”左边需增乘的代数式是()A. B.C. D.10.在数列中,已知,,则一定()A.是等差数列 B.是等比数列 C.不是等差数列 D.不是等比数列二、填空题:本大题共6小题,每小题5分,共30分。11.在直角坐标系xOy中,一单位圆的圆心的初始位置在,此时圆上一点P的位置在,圆在x轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为________.12.函数的值域是________.13.的内角的对边分别为.若,则的面积为__________.14.在中,角所对边长分别为,若,则的最小值为__________.15.正六棱柱各棱长均为,则一动点从出发沿表面移动到时的最短路程为__________.16.已知数列的前n项和,则数列的通项公式是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在中,点在边上,,,,.(1)求的值;(2)求的面积.18.如图是某地某公司名员工的月收入后的直方图.根据直方图估计:(1)该公司月收入在元到元之间的人数;(2)该公司员工的月平均收入.19.已知函数的最小正周期为,(1)求函数的单调递减区间;(2)若函数在区间上有两个零点,求实数的取值范围.20.如下图,长方体ABCD-A1B1C1D1中,(1)当点E在AB上移动时,三棱锥D-D(2)当点E在AB上移动时,是否始终有D121.已知函数.(1)求函数的值域和单调减区间;(2)已知为的三个内角,且,,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

由下确界定义,,的最小值是,由余弦函数性质可得.【题目详解】由题意,的最小值是,又,由,得,,,时,,所以.故选:A.【题目点拨】本题考查新定义,由新定义明确本题中的下确界就是函数的最小值.可通过解不等式确定参数的范围.2、B【解题分析】

取,则,,只有B符合.故选B.考点:基本不等式.3、A【解题分析】试题分析:直三棱柱的各项点都在同一个球面上,如图所示,所以中,,所以下底面的外心为的中点,同理,可得上底面的外心为的中点,连接,则与侧棱平行,所以平面,再取的中点,可得点到的距离相等,所以点是三棱柱的为接球的球心,因为直角中,,所以,即外接球的半径,因此三棱柱外接球的体积为,故选A.考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.4、B【解题分析】

根据两直线的平行关系,列出方程,即可求解实数的值,得到答案.【题目详解】由题意,当时,显然两条直线不平行,所以;由两条直线平行可得:,解得,当时,直线方程分别为:,,显然平行,符合题意;当时,直线方程分别为,,很显然两条直线重合,不合题意,舍去,所以,故选B.【题目点拨】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线平行的条件,准去计算是解答的关键,着重考查了运算与求解能力,属于基础题.5、C【解题分析】

依次分析选项的奇偶性和在区间上的单调性即可得到答案.【题目详解】因为是奇函数,故A选项错误,因为是非奇非偶函数,故D选项错误,因为是偶函数,由函数图像知,在区间上单调递增,故B选项错误,因为是偶函数,由函数图像知,在区间上单调递减,故C选项正确.故选:C.【题目点拨】本题主要考查了函数的奇偶性的判断,二次函数单调性的判断,属于基础题.6、B【解题分析】试题分析:设从2015年开始第年该公司全年投入的研发资金开始超过200万元,由已知得,两边取常用对数得,故从2019年开始,该公司全年投入的研发资金开始超过200万元,故选B.【考点】增长率问题,常用对数的应用【名师点睛】本题考查等比数列的实际应用.在实际问题中平均增长率问题可以看作等比数列的应用,解题时要注意把哪个数作为数列的首项,然后根据等比数列的通项公式写出通项,列出不等式或方程就可求解.7、A【解题分析】

通过计算两个向量的数量积,然后再判断两个向量能否写成的形式,这样可以选出正确答案.【题目详解】因为,,所以,而不存在实数,使成立,因此与不共线,故本题选A.【题目点拨】本题考查了两个平面向量垂直的判断,考查了平面向量共线的判断,考查了数学运算能力.8、D【解题分析】

通过同向向量的性质即可得到答案.【题目详解】与同向,,解得或(舍去),故选D.【题目点拨】本题主要考查平行向量的坐标运算,但注意同向,难度较小.9、C【解题分析】

分别求出n=k时左端的表达式,和n=k+1时左端的表达式,比较可得“n从k到k+1”左端需增乘的代数式.【题目详解】当n=k时,左端=(k+1)(k+2)(k+3)…(2k),当n=k+1时,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左边需增乘的代数式是故选:C.【题目点拨】本题考查用数学归纳法证明等式,分别求出n=k时左端的表达式和n=k+1时左端的表达式,是解题的关键.10、C【解题分析】

依据等差、等比数列的定义或性质进行判断。【题目详解】因为,,,所以一定不是等差数列,故选C。【题目点拨】本题主要考查等差、等比数列定义以及性质的应用。二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

设滚动后圆的圆心为C,切点为A,连接CP.过C作与x轴正方向平行的射线,交圆C于B(2,1),设∠BCP=θ,则根据圆的参数方程,得P的坐标为(1+cosθ,1+sinθ),再根据圆的圆心从(0,1)滚动到(1,1),算出,结合三角函数的诱导公式,化简可得P的坐标为,即为向量的坐标.【题目详解】设滚动后的圆的圆心为C,切点为,连接CP,过C作与x轴正方向平行的射线,交圆C于,设,∵C的方程为,∴根据圆的参数方程,得P的坐标为,∵单位圆的圆心的初始位置在,圆滚动到圆心位于,,可得,可得,,代入上面所得的式子,得到P的坐标为,所以的坐标是.故答案为:.【题目点拨】本题考查圆的参数方程,平面向量坐标表示的应用,解题的关键是根据数形结合找到变量的角度,属于中等题.12、【解题分析】

求出函数在上的值域,根据原函数与反函数的关系即可求解.【题目详解】因为函数,当时是单调减函数当时,;当时,所以在上的值域为根据反函数的定义域就是原函数的值域可得函数的值域为故答案为:【题目点拨】本题求一个反三角函数的值域,着重考查了余弦函数的图像与性质和反函数的性质等知识,属于基础题.13、【解题分析】

本题首先应用余弦定理,建立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【题目详解】由余弦定理得,所以,即解得(舍去)所以,【题目点拨】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.14、【解题分析】

根据余弦定理,可得,然后利用均值不等式,可得结果.【题目详解】在中,,由,所以又,当且仅当时取等号故故的最小值为故答案为:【题目点拨】本题考查余弦定理以及均值不等式,属基础题.15、【解题分析】

根据可能走的路径,将所给的正六棱柱展开,利用平面几何知识求解比较.【题目详解】将所给的正六棱柱下图(2)表面按图(1)展开.,,,故从A沿正侧面和上表面到D1的路程最短为故答案为:.【题目点拨】本题主要考查了空间几何体展形图的应用,还考查了空间想象和运算求解的能力,属于中档题.16、【解题分析】

时,,利用时,可得,最后验证是否满足上式,不满足时候,要写成分段函数的形式.【题目详解】当时,,当时,=,又时,不适合,所以.【题目点拨】本题考查了由求,注意使用求时的条件是,所以求出后还要验证适不适合,如果适合,要将两种情况合成一种情况作答,如果不适合,要用分段函数的形式作答.属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)设,分别在和中利用余弦定理计算,联立方程组,求得的值,再由余弦定理,即可求解的值;(2)由(1)的结论,计算,利用三角形的面积公式,即可求解.【题目详解】(1),则,所以在中,由余弦定理得,在中,由余弦定理得,所以,解得,所以,由余弦定理得(2)由(1)求得,,所以,所以.【题目点拨】本题主要考查了余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理列出方程是解答的关键,着重考查了运算与求解能力,属于基础题.18、(1);(2).【解题分析】

(1)根据频率分布直方图得出该公司月收入在元到元的员工所占的频率,再乘以可得出所求结果;(2)将每个矩形底边的中点值乘以对应矩形的面积,再将所得的积全部相加可得出该公司员工月收入的平均数.【题目详解】(1)根据频率分布直方图知,该公司月收入在元到元的员工所占的频率为:,因此,该公司月收入在元到元之间的人数为;(2)据题意该公司员工的平均收入为:(元).【题目点拨】本题考查频率分布直方图的应用,考查频数的计算以及平均数的计算,解题时要注意频数、平均数的计算原则,考查计算能力,属于基础题.19、(1)的单调递减区间为(2)【解题分析】

(1)由二倍角公式和两角和的正弦公式化函数为一个角的一个三角函数形式,然后得正弦函数的单调性求得减区间;(2)函数在区间上有两个零点可转化为函数与的图像有两个不同的交点.,利用函数图象可求解.【题目详解】(1)函数的最小正周期,故令,得故的单调递减区间为(2)函数在区间上有两个零点,即方程区间上有两个不同的实根,即函数与的图像有两个不同的交点.,故,结合单调性可知,要使函数与图像有两个不同的交点,则,所以【题目点拨】本题考查三角函数的图象与性质,考查二倍角公式和两角和的正弦公式,考查零点个数问题.解决函数零点个数问题通常需要转化与化归,即转化为函数图象交点个数问题,大多数情况是函数图象与直线交点个数问题.象本题,最后转化为求函数的单调性与极值(最值).20、(1)13【解题分析】(I)三棱锥D-D∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论