黑龙江省克东一中、克山一中等五校联考2024届数学高一下期末经典模拟试题含解析_第1页
黑龙江省克东一中、克山一中等五校联考2024届数学高一下期末经典模拟试题含解析_第2页
黑龙江省克东一中、克山一中等五校联考2024届数学高一下期末经典模拟试题含解析_第3页
黑龙江省克东一中、克山一中等五校联考2024届数学高一下期末经典模拟试题含解析_第4页
黑龙江省克东一中、克山一中等五校联考2024届数学高一下期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省克东一中、克山一中等五校联考2024届数学高一下期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数所具有的性质,一定成立的是()A. B.C. D.2.在区间上随机地取一个数.则的值介于0到之间的概率为().A. B. C. D.3.已知是第一象限角,那么是()A.第一象限角 B.第二象限角C.第一或第二象限角 D.第一或第三象限角4.在正四棱柱,,则异面直线与所成角的余弦值为A. B. C. D.5.(2017新课标全国卷Ⅲ文科)已知椭圆C:的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为A. B.C. D.6.若展开式中的系数为-20,则等于()A.-1 B. C.-2 D.7.已知向量,满足,在上的投影(正射影的数量)为-2,则的最小值为()A. B.10 C. D.88.函数(,)的部分图象如图所示,则的值分别是()A. B. C. D.9.在等差数列an中,a1+a2A.2n B.2n+1 C.2n-1 D.2n+210.执行如图所示的程序框图,则输出的()A.3 B.4 C.5 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法——“三斜求积术”,即的,其中分别为内角的对边.若,且则的面积的最大值为____.12.已知扇形的半径为6,圆心角为,则扇形的弧长为______.13.已知x,y满足,则的最大值为________.14.函数的递增区间是__________.15.若等差数列的前项和,且,则______________.16.如图是一个算法的流程图,则输出的的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的顶点,边上的中线所在直线方程为,的平分线所在直线方程为,求:(Ⅰ)顶点的坐标;(Ⅱ)直线的方程18.在中,内角A、B、C所对的边分别为,,,已知.(Ⅰ)求角B的大小;(Ⅱ)设,,求.19.已知向量,.(I)若,共线,求的值.(II)若,求的值;(III)当时,求与夹角的余弦值.20.己知函数.(1)若,,求;(2)当为何值时,取得最大值,并求出最大值.21.共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了50人就该城市共享单车的推行情况进行问卷调査,并将问卷中的这50人根据其满意度评分值(百分制)按照分成5组,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:频率分布表组别分组频数频率第1组80.16第2组▆第3组200.40第4组▆0.08第5组2合计▆▆(1)求的值;(2)若在满意度评分值为的人中随机抽取2人进行座谈,求所抽取的2人中至少一人来自第5组的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

结合反三角函数的性质,逐项判定,即可求解.【题目详解】由题意,对于A中,令,则,所以不正确;对于C中,根据反正弦函数的性质,可得,所以是错误的;对于D中,函数当时,则满足,所以不正确,故选:B.【题目点拨】本题主要考查了反三角函数的性质的应用,其中解答中熟记反三角函数的性质,逐项判定是解答的关键,着重考查了推理与运算能力,属于基础题.2、D【解题分析】

由,得.由函数的图像知,使的值介于0到之间的落在和之内.于是,所求概率为.故答案为D3、D【解题分析】

根据象限角写出的取值范围,讨论即可知在第一或第三象限角【题目详解】依题意得,则,当时,是第一象限角当时,是第三象限角【题目点拨】本题主要考查象限角,属于基础题.4、A【解题分析】

作出两异面直线所成的角,然后由余弦定理求解.【题目详解】在正四棱柱中,则异面直线与所成角为或其补角,在中,,,.故选A.【题目点拨】本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角,然后通过解三角形求之.5、A【解题分析】以线段为直径的圆的圆心为坐标原点,半径为,圆的方程为,直线与圆相切,所以圆心到直线的距离等于半径,即,整理可得,即即,从而,则椭圆的离心率,故选A.【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6、A【解题分析】由,可得将选项中的数值代入验证可得,符合题意,故选A.7、D【解题分析】

在上的投影(正射影的数量)为可知,可求出,求的最小值即可得出结果.【题目详解】因为在上的投影(正射影的数量)为,所以,即,而,所以,因为所以,即,故选D.【题目点拨】本题主要考查了向量在向量上的正射影,向量的数量积,属于难题.8、A【解题分析】

利用,求出,再利用,求出即可【题目详解】,,,则有,代入得,则有,,,又,故答案选A【题目点拨】本题考查三角函数的图像问题,依次求出和即可,属于简单题9、C【解题分析】

直接利用等差数列公式解方程组得到答案.【题目详解】aaa1故答案选C【题目点拨】本题考查了等差数列的通项公式,属于基础题型.10、C【解题分析】

由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出相应变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【题目详解】解:模拟程序的运行,可得

S=0,n=1

S=2,n=2

满足条件S<30,执行循环体,S=2+4=6,n=3

满足条件S<30,执行循环体,S=6+8=14,n=4

满足条件S<30,执行循环体,S=14+16=30,n=1

此时,不满足条件S<30,退出循环,输出n的值为1.

故选C.【题目点拨】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由已知利用正弦定理可求,代入“三斜求积”公式即可求得答案.【题目详解】因为,所以整理可得,由正弦定理得因为,所以所以当时,的面积的最大值为【题目点拨】本题用到的知识点有同角三角函数的基本关系式,两角和的正弦公式,正弦定理等,考查学生分析问题的能力和计算整理能力.12、【解题分析】

先将角度化为弧度,再根据弧长公式求解.【题目详解】因为圆心角,所以弧长.故答案为:【题目点拨】本题考查了角度和弧度的互化以及弧长公式的应用问题,属于基础题.13、6【解题分析】

作出不等式组所表示的平面区域,结合图象确定目标函数的最优解,即可得到答案.【题目详解】由题意,作出不等式组所表示的平面区域,如图所示,因为目标函数,可化为直线,当直线过点A时,此时目标函数在轴上的截距最大,此时目标函数取得最大值,又由,解得,所以目标函数的最大值为.故答案为:6.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.14、;【解题分析】

先利用辅助角公式对函数化简,由可求解.【题目详解】函数,由,可得,所以函数的单调增区间为.故答案为:【题目点拨】本题考查了辅助角公式、正弦函数的图像与性质,需熟记公式与性质,属于基础题.15、【解题分析】

设等差数列的公差为,根据题意建立和的方程组,解出这两个量,即可求出的值.【题目详解】设等差数列的公差为,由题意得,解得,因此,.故答案为:.【题目点拨】本题考查等差数列中项的计算,解题的关键就是要建立首项和公差的方程组,利用这两个基本量来求解,考查运算求解能力,属于基础题.16、【解题分析】由程序框图,得运行过程如下:;,结束循环,即输出的的值是7.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解题分析】

(Ⅰ)设,可得中点坐标,代入直线可得;将点坐标代入直线得,可构造出方程组求得点坐标;(Ⅱ)设点关于的对称点为,根据点关于直线对称点的求解方法可求得,因为在直线上,根据两点坐标可求得直线方程.【题目详解】(Ⅰ)设,则中点坐标为:,即:又,解得:,(Ⅱ)设点关于的对称点为则,解得:边所在的直线方程为:,即:【题目点拨】本题考查直线方程、直线交点的求解;关键是能够熟练应用中点坐标公式和点关于直线对称点的求解方法,属于常考题型.18、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)在△ABC中,利用正弦定理及其.可得,利用和差公式化简整理可得B.(Ⅱ)在△ABC中,利用余弦定理即可得出b.【题目详解】(Ⅰ)在△ABC中,由正弦定理,又.可得,∴sinBcosBsinB,则.又∵B∈(0,π),可得.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,,∴b2=a2+c2﹣2accosB=4+9﹣2×2×3×cos7,解得.【题目点拨】本题考查了正弦定理、余弦定理、和差公式,考查了推理能力与计算能力,属于中档题.19、(I);(II);(III)【解题分析】

(1)根据题意,由向量平行的坐标公式可得﹣2x=4,解可得x的值,即可得答案;(2)若,则有,结合向量数量积的坐标可得,即4x﹣2=0,解可得x的值,即可得答案;(3)根据题意,由x的值可得的坐标,由向量的坐标计算公式可得、和的值,结合,计算可得答案.解:(I)∵与共线,∴,(II)∵,∴,∴(III)∵,∵,,∴,又∵,∴.20、(1);(1),1.【解题分析】

(1)由题得,再求出x的值;(1)先化简得到,再利用三角函数的性质求函数的最大值及此时x的值.【题目详解】(1)令,则,因为,所以.(1),当,即时,的最大值为1.【题目点拨】本题主要考查解简单的三角方程,考查三角函数的最值,意在考查学生对这些知识的理解掌握水平,属于基础题.21、(1);(2).【解题分析】

(1)根据频率分布表可得b.先求得内的频数,即可由总数减去其余部分求得.结合频率分布直方图,即可求得的值.(2)根据频率分布表可知在内有4人,在有2人.列举出从这6人中选取2人的所有可能,由古典概型概

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论