版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省9+1高中联盟长兴中学数学高一第二学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列的前n项和为,则A.140 B.70 C.154 D.772.已知锐角中,角所对的边分别为,若,则的取值范围是()A. B. C. D.3.已知,,直线,若直线过线段的中点,则()A.-5 B.5 C.-4 D.44.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10记为数列,将可被5整除的三角形数,按从小到大的顺序组成一个新数列,可以推测:()A.1225 B.1275 C.2017 D.20185.函数f(x)=log3(2﹣x)的定义域是()A.[2,+∞) B.(2,+∞) C.(﹣∞,2) D.(﹣∞,2]6.已知且,则为()A. B. C. D.7.若双曲线的渐近线与直线所围成的三角形面积为2,则该双曲线的离心率为()A. B. C. D.8.在区间内任取一个实数,则此数大于2的概率为()A. B. C. D.9.设偶函数定义在上,其导数为,当时,,则不等式的解集为()A. B.C. D.10.已知内角,,所对的边分别为,,且满足,则=()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,那么的值是________.12.函数的图像可由函数的图像至少向右平移________个单位长度得到.13.计算__________.14.设,,,若,则实数的值为______15.已知圆锥的表面积等于,其侧面展开图是一个半圆,则底面圆的半径为__________.16.函数的最小正周期为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数.(1)若不等式的解集,求的值;(2)若,①,求的最小值;②若在上恒成立,求实数的取值范围.18.已知平面向量,.(1)若与垂直,求;(2)若,求.19.已知圆:与圆:.(1)求两圆的公共弦长;(2)过平面上一点向圆和圆各引一条切线,切点分别为,设,求证:平面上存在一定点使得到的距离为定值,并求出该定值.20.将边长分别为、、、…、、、…的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第个、第个、……、第个阴影部分图形.设前个阴影部分图形的面积的平均值为.记数列满足,(1)求的表达式;(2)写出,的值,并求数列的通项公式;(3)定义,记,且恒成立,求的取值范围.21.已知函数f(x)=sinωx·cosωx+cos2ωx-(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为.(Ⅰ)求f(x)的表达式;(Ⅱ)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
利用等差数列的前n项和公式,及等差数列的性质,即可求出结果.【题目详解】等差数列的前n项和为,.故选D.【题目点拨】本题考查等差数列的前n项和的求法和等差数列的性质,属于基础题.2、B【解题分析】
利用余弦定理化简后可得,再利用正弦定理把边角关系化为角的三角函数的关系式,从而得到,因此,结合的范围可得所求的取值范围.【题目详解】,因为为锐角三角形,所以,,,故,选B.【题目点拨】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.3、B【解题分析】
根据题意先求出线段的中点,然后代入直线方程求出的值.【题目详解】因为,,所以线段的中点为,因为直线过线段的中点,所以,解得.故选【题目点拨】本题考查了直线过某一点求解参量的问题,较为简单.4、A【解题分析】
通过寻找规律以及数列求和,可得,然后计算,可得结果.【题目详解】根据题意可知:则由…可得所以故选:A【题目点拨】本题考查不完全归纳法的应用,本题难点在于找到,属难题,5、C【解题分析】试题分析:利用对数函数的性质求解.解:函数f(x)=log3(1﹣x)的定义域满足:1﹣x>0,解得x<1.∴函数f(x)=log3(1﹣x)的定义域是(﹣∞,1).故选C.考点:对数函数的定义域.6、B【解题分析】由题意得,因为,即,所以,又,又,且,所以,故选B.7、A【解题分析】渐近线为,时,,所以,即,,,故选A.8、D【解题分析】
根据几何概型长度型直接求解即可.【题目详解】根据几何概型可知,所求概率为:本题正确选项:【题目点拨】本题考查几何概型概率问题的求解,属于基础题.9、C【解题分析】构造函数,则,所以当时,,单调递减,又在定义域内为偶函数,所以在区间单调递增,单调递减,又等价于,所以解集为.故选C.点睛:本题考查导数的构造法应用.本题中,由条件构造函数,结合函数性质,可得抽象函数在区间单调递增,单调递减,结合函数草图,即可解得不等式解集.10、A【解题分析】
利用正弦定理以及和与差的正弦公式可得答案;【题目详解】∵0<A<π,∴sinA≠0由atanA=bcosC+ccosB,根据正弦定理:可得sinA•tanA=sinBcosC+sinCcosB=sin(B+C)=sinA∴•tanA=1;∴tanA,那么A;故选A.【题目点拨】本题考查三角形的正弦定理,,内角和定理以及和与差正弦公式的运用,考查运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
首先根据题中条件求出角,然后代入即可.【题目详解】由题知,,所以,故.故答案为:.【题目点拨】本题考查了特殊角的三角函数值,属于基础题.12、【解题分析】试题分析:因为,所以函数的的图像可由函数的图像至少向右平移个单位长度得到.【考点】三角函数图像的平移变换、两角差的正弦公式【误区警示】在进行三角函数图像变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图像变换要看“变量”变化多少,而不是“角”变化多少.13、【解题分析】
采用分离常数法对所给极限式变形,可得到极限值.【题目详解】.【题目点拨】本题考查分离常数法求极限,难度较易.14、【解题分析】
根据题意,可以求出,根据可得出,进行数量积的坐标运算即可求出的值.【题目详解】故答案为:【题目点拨】本题考查向量垂直的坐标表示,属于基础题.15、【解题分析】
设出底面圆的半径,用半径表示出圆锥的母线,再利用表面积,解出半径。【题目详解】设圆锥的底面圆的半径为,母线为,则底面圆面积为,周长为,则解得故填2【题目点拨】本题考查根据圆锥的表面积求底面圆半径,属于基础题。16、【解题分析】
根据的最小正周期判断即可.【题目详解】因为的最小正周期均为,故的最小正周期为.故答案为:【题目点拨】本题主要考查了正切余切函数的周期,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)①9,②【解题分析】
(1)根据不等式的端点值是对应方程的实数根,利用根与系数的关系,得到的值;(2)①根据求的最值,可利用求最值;②利用二次函数恒成立问题求解.【题目详解】由已知可知,的两根是所以,解得.(2)①,当时等号成立,因为,解得时等号成立,此时的最小值是9.②在上恒成立,,又因为代入上式可得解得:.【题目点拨】本题考查了二次函数与一元二次方程和一元二次不等式的问题,和基本不等式求最值,属于基础题型.18、(1);(2)【解题分析】
(1)根据垂直数量积为0求解即可.(2)根据平行的公式求解,再计算即可.【题目详解】解:(1)由已知得,,解得或.因为,所以.(2)若,则,所以或.因为,所以.所以,所以.【题目点拨】本题主要考查了向量垂直与平行的运用以及模长的计算,属于基础题型.19、(1)(2)【解题分析】
(1)把两圆方程相减得到公共弦所在直线方程,再根据点到直线距离公式与圆的垂径定理求两圆的公共弦长;(2)根据圆的切线长与半径的关系代入化简即可得到点的轨迹方程,进而求解.【题目详解】解:(1)由,相减得两圆的公共弦所在直线方程为:,设(0,0)到的距离为,则所以,公共弦长为所以,公共弦长为.(2)证明:由题设得:化简得:配方得:所以,存在定点使得到的距离为定值,且该定值为.【题目点拨】本题主要考查圆的应用.求两圆的公共弦关键在求公共弦所在直线方程;求动点与定点距离问题,首先要求出动点的轨迹方程.20、(1);(2),,;(3).【解题分析】
(1)根据题意,分别求出每一个阴影部分图形的面积,即可得到前个阴影部分图形的面积的平均值;(2)依据递推式,结合分类讨论思想,即可求出数列的通项公式;(3)先求出的表达式,再依题意得到,分类讨论不等式恒成立的条件,取其交集,即得所求范围。【题目详解】(1)由题意有,第一个阴影部分图形面积是:;第二个阴影部分图形面积是:;第三个阴影部分图形面积是:;所以第个阴影部分图形面积是:;故;(2)由(1)知,,,所以,,当时,当时,,综上,数列的通项公式为,。(3)由(2)知,,,由题意可得,恒成立,①当时,,即,所以,②当时,,即,所以,③当时,,即,所以,综上,。【题目点拨】本题主要考查数列的通项公式求法,数列不等式恒成立问题的解法以及分类讨论思想的运用,意在考查学生逻辑推理能力及运算能力。21、(1)f(x)=sin.(2)【解题分析】试题分析:(1)先利用二倍角公式和辅助角公式化简
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流行业2021流感防控工作方案
- 蔬菜大棚施工预算方案
- 私立幼儿园教师职称评审方案
- 城市交通拥堵治理方案
- 制造业产品售后服务优化方案
- 新闻报道公正性提升方案
- 提升企业员工专业技能的培训方案
- 物业管理信访维稳工作方案
- 市值合作协议书(2篇)
- 餐饮行业新冠肺炎疫情防控应急预案
- 上海市大学生安全教育(2022级)学习通课后章节答案期末考试题库2023年
- 苏轼生平及创作整理
- 柴油发电机组应急预案
- 语文《猜猜他是谁》教案
- 绘本:让谁先吃好呢
- 宽容待人正确交往中小学生教育主题班会
- 移动通信网络运行维护管理规程
- 龙头股战法优质获奖课件
- 小班幼儿语言活动教案100篇
- 中国青瓷艺术鉴赏智慧树知到答案章节测试2023年丽水学院
- 中广国际总公司-CR2010卫星接收解码器
评论
0/150
提交评论