2024届北京市西城区北京第四十四中学数学高一下期末调研模拟试题含解析_第1页
2024届北京市西城区北京第四十四中学数学高一下期末调研模拟试题含解析_第2页
2024届北京市西城区北京第四十四中学数学高一下期末调研模拟试题含解析_第3页
2024届北京市西城区北京第四十四中学数学高一下期末调研模拟试题含解析_第4页
2024届北京市西城区北京第四十四中学数学高一下期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京市西城区北京第四十四中学数学高一下期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.奇函数在上单调递减,且,则不等式的解集是().A. B.C. D.2.在正项等比数列中,,数列的前项之和为()A. B. C. D.3.数列中,对于任意,恒有,若,则等于()A. B. C. D.4.已知等比数列的前项和为,,,则()A.31 B.15 C.8 D.75.在数列中,,,则的值为()A.4950 B.4951 C. D.6.已知,则()A. B. C. D.7.已知函数,(,,)的部分图像如图所示,则、、的一个数值可以是()A. B.C. D.8.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度9.在中,是上一点,且,则()A. B.C. D.10.圆的圆心坐标和半径分别为()A.,2 B.,2 C.,4 D.,4二、填空题:本大题共6小题,每小题5分,共30分。11.数列{}的前项和为,若,则{}的前2019项和____.12.已知数列的通项公式为,的前项和为,则___________.13.函数的最小正周期为________14.已知,则________.15.已知数列满足,,,则__________.16.设数列是等差数列,,,则此数列前20项和等于______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在四棱锥P-ABCD中,,,,平面底面ABCD,E和F分别是CD和PC的中点.求证:(1)平面BEF;(2)平面平面PCD.18.甲、乙两位同学参加数学应用知识竞赛培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:(Ⅰ)分别估计甲、乙两名同学在培训期间所有测试成绩的平均分;(Ⅱ)从上图中甲、乙两名同学高于85分的成绩中各选一个成绩作为参考,求甲、乙两人成绩都在90分以上的概率;(Ⅲ)现要从甲、乙中选派一人参加正式比赛,根据所抽取的两组数据分析,你认为选派哪位同学参加较为合适?说明理由.19.在△中,角、、所对的边分别为、、,且.(1)求的值;(2)若,求的最大值;(3)若,,为的中点,求线段的长度.20.已知函数=的定义域为=的定义域为(其中为常数).(1)若,求及;(2)若,求实数的取值范围.21.已知函数f(x)=x2+(x-1)|x-a|.(1)若a=-1,解方程f(x)=1;(2)若函数f(x)在R上单调递增,求实数a的取值范围;(3)是否存在实数a,使不等式f(x)≥2x-3对任意x∈R恒成立?若存在,求出a的取值范围;若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

因为函数式奇函数,在上单调递减,根据奇函数的性质得到在上函数仍是减函数,再根据可画出函数在上的图像,根据对称性画出在上的图像.根据图像得到的解集是:.故选A.2、B【解题分析】

根据等比数列的性质,即可解出答案。【题目详解】故选B【题目点拨】本题考查等比数列的性质,同底对数的运算,属于基础题。3、D【解题分析】因为,所以

,

.选D.4、B【解题分析】

利用基本元的思想,将已知条件转化为的形式,由此求得,进而求得.【题目详解】由于数列是等比数列,故,由于,故解得,所以.故选:B.【题目点拨】本小题主要考查等比数列通项公式的基本量的计算,考查等比数列前项和公式,属于基础题.5、C【解题分析】

利用累加法求得,由此求得的表达式,进而求得的值.【题目详解】依题意,所以,所以,当时,上式也满足.所以.故选:C【题目点拨】本小题主要考查累加法求数列的通项公式,属于基础题.6、C【解题分析】

利用诱导公式和同角三角函数的商数关系,得,再利用化弦为切的方法,即可求得答案.【题目详解】由已知则故选C.【题目点拨】本题考查利用三角函数的诱导公式、同角三角函数的基本关系化简求值,属于三角函数求值问题中的“给值求值”问题,解题的关键是正确掌握诱导公式中符号与函数名称的变换规律和化弦为切方法.7、A【解题分析】

从图像易判断,再由图像判断出函数周期,根据,将代入即可求得【题目详解】根据正弦函数图像的性质可得,由,,又因为图像过,代入函数表达式可得,即,,解得故选:A【题目点拨】本题考查三角函数图像与性质的应用,函数图像的识别,属于中档题8、D【解题分析】

试题分析:将函数的图象向右平移,可得,故选D.考点:图象的平移.9、C【解题分析】

利用平面向量的三角形法则和共线定理,即可得到结果.【题目详解】因为是上一点,且,则.故选:C.【题目点拨】本题考查了平面向量的线性运算和共线定理的应用,属于基础题.10、B【解题分析】试题分析:,所以圆心坐标和半径分别为(2,0)和2,选B.考点:圆标准方程二、填空题:本大题共6小题,每小题5分,共30分。11、1009【解题分析】

根据周期性,对2019项进行分类计算,可得结果。【题目详解】解:根据题意,的值以为循环周期,=1009故答案为:1009.【题目点拨】本题考查了周期性在数列中的应用,属于中档题。12、【解题分析】

计算出,再由可得出的值.【题目详解】当时,则,当时,则,当时,.,,因此,.故答案为:.【题目点拨】本题考查数列求和,解题的关键就是找出数列的规律,考查分析问题和解决问题的能力,属于中等题.13、【解题分析】

根据的最小正周期判断即可.【题目详解】因为的最小正周期均为,故的最小正周期为.故答案为:【题目点拨】本题主要考查了正切余切函数的周期,属于基础题型.14、【解题分析】

利用向量内积的坐标运算以及向量模的坐标表示,准确运算,即可求解.【题目详解】由题意,向量,则,,所以.故答案为【题目点拨】本题主要考查了向量内积的坐标运算,以及向量模的坐标运算的应用,其中解答中熟记向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.15、-2【解题分析】

根据题干中所给的表达式得到数列的周期性,进而得到结果.【题目详解】根据题干表达式得到可以得数列具有周期性,周期为3,故得到故得到故答案为:-2.【题目点拨】这个题目考查了求数列中的某些项,一般方法是求出数列通项,对于数列通项不容易求的题目,可以列出数列的一些项,得到数列的周期或者一些其它规律,进而得到数列中的项.16、180【解题分析】

根据条件解得公差与首项,再代入等差数列求和公式得结果【题目详解】因为,,所以,【题目点拨】本题考查等差数列通项公式以及求和公式,考查基本分析求解能力,属基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(2)证明见解析(2)证明见解析【解题分析】

(1)连接,交于,结合平行四边形的性质可得,再由线面平行的判定定理,即可得证(2)运用面面垂直的性质定理可得平面,推得,,,再由线面垂直的判定定理和吗垂直的判定定理,即可得证.【题目详解】证明:(1)连接,交于,可得四边形为平行四边形,且为的中点,可得为的中位线,可得,平面,面,可得面;(2)平面底面,,可得平面,即有,,可得,由,,可得四边形为矩形,即有,又,,可得,且所以有平面,而平面,则平面平面.【题目点拨】本题考查线面平行和面面垂直的判定,注意运用线线平行和线面垂直的判定定理,考查推理能力,属于中档题.18、(Ⅰ)(Ⅱ)(Ⅲ)见解析【解题分析】

(Ⅰ)由茎叶图中的数据计算、,进而可得平均分的估计值;(Ⅱ)求出基本事件数,计算所求的概率值;(Ⅲ)答案不唯一.从平均数与方差考虑,派甲参赛比较合适;从成绩优秀情况分析,派乙参赛比较合适.【题目详解】(Ⅰ)由茎叶图中的数据,计算,,由样本估计总体得,甲、乙两名同学在培训期间所有测试成绩的平均分分别均约为分.(Ⅱ)从甲、乙两名同学高于分的成绩中各选一个成绩,基本事件是,甲、乙两名同学成绩都在分以上的基本事件为,故所求的概率为.(Ⅲ)答案不唯一.派甲参赛比较合适,理由如下:由(Ⅰ)知,,,,因为,,所有甲的成绩较稳定,派甲参赛比较合适;派乙参赛比较合适,理由如下:从统计的角度看,甲获得分以上(含分)的频率为,乙获得分以上(含分)的频率为,因为,所有派乙参赛比较合适.【题目点拨】本题考查了利用茎叶图计算平均数与方差的应用问题,属于基础题.19、(1);(2);(3).【解题分析】

(1)由三角恒等变换的公式,化简,代入即可求解.(2)在中,由余弦定理,结合基本不等式,求得,即可得到答案.(3)设,在中,由余弦定理,求得,分别在和中,利用余弦定理,列出方程,即可求解.【题目详解】(1)由题意,在中,,则又由.(2)在中,由余弦定理可得,即,可得,当且仅当等号成立,所以的最大值为.(3)设,如图所示,在中,由余弦定理可得,即,即,解得,在中,由余弦定理,可得,……①在中,由余弦定理,可得,……②因为,所以,由①+②,可得,即,解得,即.【题目点拨】本题主要考查了正弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,余弦定理在解三角形中的综合应用,其中解答中熟记三角恒等变换的公式,以及合理应用正弦定理、余弦定理求解是解答的关键,着重考查了转化思想与运算、求解能力,属于基础题.20、(1);=.(2)【解题分析】试题分析:(1)先根据偶次根式非负得不等式,解不等式得A,B,再结合数轴求交,并,补(2)先根据得,再根据数轴得实数的取值范围.试题解析:(1)若,则由已知有因此;,所以=.(2)∴,又==∴21、(1){x|x≤-1或x=1};(2);(3).【解题分析】试题分析:(1)把代入函数解析式,分段后分段求解方程的解集,取并集后得答案;(2)分段写出函数的解析式,由在上单调递增,则需第一段二次函数的对称轴小于等于,第二段一次函数的一次项系数大于0,且第二段函数的最大值小于等于第一段函数的最小值,联立不等式组后求解的取值范围;(3)把不等式对一切实数恒成立转化为函数对一切实数恒成立,然后对进行分类讨

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论