北京市顺义区市级名校2024届数学高一下期末联考模拟试题含解析_第1页
北京市顺义区市级名校2024届数学高一下期末联考模拟试题含解析_第2页
北京市顺义区市级名校2024届数学高一下期末联考模拟试题含解析_第3页
北京市顺义区市级名校2024届数学高一下期末联考模拟试题含解析_第4页
北京市顺义区市级名校2024届数学高一下期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市顺义区市级名校2024届数学高一下期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的终边经过点,则=()A. B. C. D.2.点(4,0)关于直线5x+4y+21=0的对称点是().A.(-6,8) B.(-8,-6) C.(6,8) D.(-6,-8)3.下列关于函数()的叙述,正确的是()A.在上单调递增,在上单调递减B.值域为C.图像关于点中心对称D.不等式的解集为4.《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽丈,长丈;上棱长丈,无宽,高丈(如图).问它的体积是多少?”这个问题的答案是()A.立方丈 B.立方丈C.立方丈 D.立方丈5.已知,都是实数,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.点到直线的距离是()A. B. C.3 D.7.已知等比数列满足,,则()A. B. C. D.8.已知Sn是等差数列{an}的前n项和,a2+a4+a6=12,则S7=()A.20 B.28 C.36 D.49.函数的图像与函数,的图像的交点个数为()A. B. C. D.10.设为中的三边长,且,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则__________.12.化简:______.(要求将结果写成最简形式)13.已知,,若,则______.14.已知等差数列的前项和为,若,则=_______15.在某校举行的歌手大赛中,7位评委为某同学打出的分数如茎叶图所示,去掉一个最高分和一个最低分后,所剩数据的方差为______.16.已知等比数列的公比为,关于的不等式有下列说法:①当吋,不等式的解集②当吋,不等式的解集为③当>0吋,存在公比,使得不等式解集为④存在公比,使得不等式解集为R.上述说法正确的序号是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知离心率为的椭圆过点.(1)求椭圆的方程;(2)过点作斜率为直线与椭圆相交于两点,求的长.18.已知函数,,(,为常数).(1)若方程有两个异号实数解,求实数的取值范围;(2)若的图像与轴有3个交点,求实数的取值范围;(3)记,若在上单调递增,求实数的取值范围.19.如图,甲、乙两个企业的用电负荷量关于投产持续时间(单位:小时)的关系均近似地满足函数.(1)根据图象,求函数的解析式;(2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟小时投产,求的最小值.20.已知向量,其中,记函数,已知的最小正周期为.(1)求;(2)当时,试求函数的值域.21.已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切,且被轴截得的弦长为,圆的面积小于13.(1)求圆的标准方程:(2)设过点的直线与圆交于不同的两点,,以,为邻边作平行四边形.是否存在这样的直线,使得直线与恰好平行?如果存在,求出的方程:如果不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】试题分析:由题意可知x=-4,y=3,r=5,所以.故选D.考点:三角函数的概念.2、D【解题分析】试题分析:设点(4,0)关于直线5x+4y+21=0的对称点是,则点在直线5x+4y+21=0上,将选项代入就可排除A,B,C,答案为D考点:点关于直线对称,排除法的应用3、D【解题分析】

运用正弦函数的一个周期的图象,结合单调性、值域和对称中心,以及不等式的解集,可得所求结论.【题目详解】函数(),在,单调递增,在上单调递减;值域为;图象关于点对称;由可得,解得:.故选:D.【题目点拨】本题考查三角函数的图象和性质,考查逻辑思维能力和运算能力,属于常考题.4、A【解题分析】过点分别作平面和平面垂直于底面,所以几何体的体积分为三部分中间是直三棱柱,两边是两个一样的四棱锥,所以立方丈,故选A.5、D【解题分析】;,与没有包含关系,故为“既不充分也不必要条件”.6、D【解题分析】

根据点到直线的距离求解即可.【题目详解】点到直线的距离是.故选:D【题目点拨】本题主要考查了点到线的距离公式,属于基础题.7、C【解题分析】试题分析:由题意可得,所以,故,选C.考点:本题主要考查等比数列性质及基本运算.8、B【解题分析】

由等差数列的性质计算.【题目详解】由题意,,∴.故选B.【题目点拨】本题考查等差数列的性质,灵活运用等差数列的性质可以很快速地求解等差数列的问题.在等差数列中,正整数满足,则,特别地若,则;.9、A【解题分析】

在同一坐标系中画出两函数的图象,根据图象得到交点个数.【题目详解】可得两函数图象如下图所示:两函数共有个交点本题正确选项:【题目点拨】本题考查函数交点个数的求解,关键是能够根据两函数的解析式,通过平移和翻折变换等知识得到函数的图象,采用数形结合的方式得到结果.10、B【解题分析】

由,则,再根据三角形边长可以证得,再利用不等式和已知可得,进而得到,再利用导数求得函数的单调性,求得函数的最小值,即可求解.【题目详解】由题意,记,又由,则,又为△ABC的三边长,所以,所以,另一方面,由于,所以,又,所以,不妨设,且为的三边长,所以.令,则,当时,可得,从而,当且仅当时取等号.故选B.【题目点拨】本题主要考查了解三角形,综合了函数和不等式的综合应用,以及基本不等式和导数的应用,属于综合性较强的题,难度较大,着重考查了分析问题和解答问题的能力,属于难题.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解题分析】

把分子的1换成,然后弦化切,代入计算.【题目详解】.故答案为-1.【题目点拨】本题考查三角函数的化简求值.解题关键是“1”的代换,即,然后弦化切.12、【解题分析】

结合诱导公式化简,再结合两角差正弦公式分析即可【题目详解】故答案为:【题目点拨】本题考查三角函数的化简,诱导公式的使用,属于基础题13、【解题分析】

首先令,分别把解出来,再利用整体换元的思想即可解决.【题目详解】令所以令,所以所以【题目点拨】本题主要考查了整体换元的思想以及对数之间的运算和公式法解一元二次方程.整体换元的思想是高中的一个重点,也是高考常考的内容需重点掌握.14、【解题分析】

利用等差数列前项和,可得;利用等差数列的性质可得,然后求解三角函数值即可.【题目详解】等差数列的前项和为,因为,所以;又,所以.故答案为:.【题目点拨】本题考查等差数列的前项和公式和等差数列的性质的应用,熟练掌握和若,则是解题的关键.15、2【解题分析】

去掉分数后剩余数据为22,23,24,25,26,先计算平均值,再计算方差.【题目详解】去掉分数后剩余数据为22,23,24,25,26平均值为:方差为:故答案为2【题目点拨】本题考查了方差的计算,意在考查学生的计算能力.16、③【解题分析】

利用等比数列的通项公式,解不等式后可得结论.【题目详解】由题意,不等式变为,即,若,则,当或时解为,当或时,解为,时,解为;若,则,当或时解为,当或时,解为,时,不等式无解.对照A、B、C、D,只有C正确.故选C.【题目点拨】本题考查等比数列的通项公式,考查解一元二次不等式,难点是解一元二次不等式,注意分类讨论,本题中需对二次项系数分正负,然后以要对两根分大小,另外还有一个是相应的一元二次方程是否有实数解分类(本题已经有两解,不需要这个分类).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)根据离心率可得的关系,将点代入椭圆方程,可得椭圆方程;(2)直线方程与椭圆方程联立,可得弦长.【题目详解】(1),又,,即椭圆方程是,代入点,可得,椭圆方程是.(2)设直线方程是,联立椭圆方程代入可得.【题目点拨】本题考查了椭圆方程和直线与椭圆的位置关系,涉及弦长公式,属于简单题.18、(1)(2)(3)或【解题分析】

(1)由题意,可知只要,即可使得方程有两个异号的实数解,得到答案;(2)由题意,得,则,再由的图象与轴由3个交点,列出相应的条件,即可求解.(3)由题意得,分类讨论确定函数的单调性,即可得到答案.【题目详解】由题可得,,与轴有一个交点;与有两个交点综上可得:实数的取值范围或【题目点拨】本题主要考查了函数与方程的综合应用,以及分段函数的性质的综合应用,其中解答中认真审题,合理分类讨论及利用函数的基本性质求解是解答的关键,试题综合性强,属于难题,着重考查了分析问题和解答问题的能力,以及分类讨论思想和转化思想的应用.19、(1);(2)4【解题分析】

(1)由,得,由,得A,b,代入,求得,从而即可得到本题答案;(2)由题,得恒成立,等价于恒成立,然后利用和差公式展开,结合辅助角公式,逐步转化,即可得到本题答案.【题目详解】(1)解:由图知,又,可得,代入,得,又,所求为(2)设乙投产持续时间为小时,则甲的投产持续时间为小时,由诱导公式,企业乙用电负荷量随持续时间变化的关系式为:同理,企业甲用电负荷量变化关系式为:两企业用电负荷量之和,依题意,有恒成立即恒成立展开有恒成立其中,,,整理得:解得即取得:的最小值为4.【题目点拨】本题主要考查根据三角函数的图象求出其解析式,以及三角函数的实际应用,主要考查学生的分析问题和解决问题的能力,以及计算能力,难度较大.20、(1)1(2)【解题分析】

(1)先根据向量数列积得关系式,再根据二倍角公式以及配角公式化为基本三角函数形式,最后根据正弦函数周期性得;(2)先根据x取值范围得范围,再根据正弦函数性质确定值域.【题目详解】(1)(2)由(1)知,,,所以函数的值域.【题目点拨】本题考查二倍角公式、配角公式以及正弦函数性质,考查基本分析求解能力.21、(1).(2)不存在这样的直线.【解题分析】

试题分析:(I)用待定系数法即可求得圆C的标准方程;(Ⅱ)首先考虑斜率不存在的情况.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2).l与圆C相交于不同的两点,那么Δ>0.由题设及韦达定理可得k与x1、x2之间关系式,进而求出k的值.若k的值满足Δ>0,则存在;若k的值不满足Δ>0,则不存在.试题解析:(I)设圆C:(x-a)2+y2=R2(a>0),由题意知解得a=1或a=,又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x-1)2+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论