江苏省吴江市青云中学2024届数学高一下期末经典试题含解析_第1页
江苏省吴江市青云中学2024届数学高一下期末经典试题含解析_第2页
江苏省吴江市青云中学2024届数学高一下期末经典试题含解析_第3页
江苏省吴江市青云中学2024届数学高一下期末经典试题含解析_第4页
江苏省吴江市青云中学2024届数学高一下期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省吴江市青云中学2024届数学高一下期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.是空气质量的一个重要指标,我国标准采用世卫组织设定的最宽限值,即日均值在以下空气质量为一级,在之间空气质量为二级,在以上空气质量为超标.如图是某地11月1日到10日日均值(单位:)的统计数据,则下列叙述不正确的是()A.这天中有天空气质量为一级 B.这天中日均值最高的是11月5日C.从日到日,日均值逐渐降低 D.这天的日均值的中位数是2.如图所示,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A. B. C. D.3.化简的结果是()A. B. C. D.4.要得到函数的图象,只需将函数的图象A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度5.已知函数的零点是和(均为锐角),则()A. B. C. D.6.已知,,,则的最小值为A. B. C. D.47.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a,b不共线,则四边形ABCD为()A.平行四边形 B.矩形 C.梯形 D.菱形8.已知不等式的解集是,则()A. B.1 C. D.39.已知函数,且的图象向左平移个单位后所得的图象关于坐标原点对称,则的最小值为()A. B. C. D.10.已知向量,且,则().A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.点从点出发,沿单位圆顺时针方向运动弧长到达点,则点的坐标为__________.12.函数的值域是__________.13.函数的最小正周期为___________.14.下列关于函数与的命题中正确的结论是______.①它们互为反函数;②都是增函数;③都是周期函数;④都是奇函数.15.下边程序执行后输出的结果是().16.在锐角中,角的对边分别为.若,则角的大小为为____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案(1)规定每日底薪50元,快递业务每完成一单提成3元;方案(2)规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七组,整理得到如图所示的频率分布直方图。(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;(2)若骑手甲、乙选择了日工资方案(1),丙、丁选择了日工资方案(2).现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案(1)的概率;18.△ABC的内角A,B,C所对边分别为,已知△ABC面积为.(1)求角C;(2)若D为AB中点,且c=2,求CD的最大值.19.设向量,,其中.(1)若,求的值;(2)若,求的值.20.某“双一流A类”大学就业部从该校2018年已就业的大学本科毕业生中随机抽取了100人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在人民币1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率分布直方图:(1)为感谢同学们对这项调查工作的支持,该校利用分层抽样的方法从样本的前两组中抽出6人,各赠送一份礼品,并从这6人中再抽取2人,各赠送某款智能手机1部,求获赠智能手机的2人月薪都不低于1.75万元的概率;(2)同一组数据用该区间的中点值作代表.(i)求这100人月薪收入的样本平均数x和样本方差s2(ii)该校在某地区就业的本科毕业生共50人,决定于2019国庆长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:方案一:设Ω=[x-s-0.018,x+s+0.018),月薪落在区间Ω左侧的每人收取400元,月薪落在区间方案二:按每人一个月薪水的3%收取;用该校就业部统计的这100人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用?参考数据:174≈13.221.无穷数列满足:为正整数,且对任意正整数,为前项、、、中等于的项的个数.(1)若,求和的值;(2)已知命题存在正整数,使得,判断命题的真假并说明理由;(3)若对任意正整数,都有恒成立,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

由折线图逐一判断各选项即可.【题目详解】由图易知:第3,8,9,10天空气质量为一级,故A正确,11月5日日均值为82,显然最大,故B正确,从日到日,日均值分别为:82,73,58,34,30,逐渐降到,故C正确,中位数是,所以D不正确,故选D.【题目点拨】本题考查了频数折线图,考查读图,识图,用图的能力,考查中位数的概念,属于基础题.2、A【解题分析】

根据题意,分析可得,由三角形面积公式计算可得△DEF和△ACF的面积,进而可得△ABC的面积,由几何概型公式计算可得答案.【题目详解】根据题意,为等边三角形,则,则,中,,其面积,中,,,其面积,则的面积,故在大等边三角形中随机取一点,则此点取自小等边三角形的概率,故选:A.【题目点拨】本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.3、D【解题分析】

直接利用同角三角函数基本关系式以及二倍角公式化简求值即可.【题目详解】.故选.【题目点拨】本题主要考查应用同角三角函数基本关系式和二倍角公式对三角函数的化简求值.4、D【解题分析】

先将化为,根据函数图像的平移原则,即可得出结果.【题目详解】因为,所以只需将的图象向右平移个单位.【题目点拨】本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.5、B【解题分析】

将函数零点转化的解,利用韦达定理和差公式得到,得到答案.【题目详解】的零点是方程的解即均为锐角故答案为B【题目点拨】本题考查了函数零点,韦达定理,和差公式,意在考查学生的综合应用能力.6、C【解题分析】

化简条件得,化简,利用基本不等式,即可求解,得到答案.【题目详解】由题意,知,可得,则,当且仅当时,即时取得等号,所以,即的最小值为,故选C.【题目点拨】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件:一正、二定、三相等是解答的关键,着重考查了推理与运算能力,属于基础题.7、C【解题分析】∵=++=-8a-2b=2,与不平行,∴四边形ABCD为梯形.8、A【解题分析】

的两个解为-1和2.【题目详解】【题目点拨】函数零点、一元二次等式的解、函数与x轴的交点之间的相互转换。9、C【解题分析】

由函数图像的平移变换得的图象向左平移个单位,得到,再结合三角函数的性质运算即可得解.【题目详解】解:,将的图象向左平移个单位,得到,因为平移后图象关于对称,所以,可得,,,,因为,所以的最小值为,故选C.【题目点拨】本题考查了函数图像的平移变换及三角函数的性质,属基础题.10、D【解题分析】

运用平面向量的加法的几何意义,结合等式,把其中的向量都转化为以为起点的向量的形式,即可求出的表示.【题目详解】,,故本题选D.【题目点拨】本题考查了平面向量加法的几何意义,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由题意可得OQ恰好是角的终边,利用任意角的三角函数的定义,求得Q点的坐标.【题目详解】点P从点出发,沿单位圆顺时针方向运动弧长到达Q点,则OQ恰好是角的终边,故Q点的横坐标,纵坐标为,故答案为:【题目点拨】本题主要考查任意角的三角函数的定义,属于容易题.12、【解题分析】

根据反余弦函数的性质,可得函数在单调递减函数,代入即可求解.【题目详解】由题意,函数的性质,可得函数在单调递减函数,又由,所以函数在的值域为.故答案为:.【题目点拨】本题主要考查了反余弦函数的单调性的应用,其中解答中熟记反余弦函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解题分析】

先利用二倍角公式对函数解析式进行化简整理,进而利用三角函数最小正周期公式可得函数的最小正周期.【题目详解】解:由题意可得:,可得函数的最小正周期为:,故答案为:.【题目点拨】本题主要考查二倍角的化简求值和三角函数周期性的求法,属于基础知识的考查.14、④【解题分析】

利用反函数,增减性,周期函数,奇偶性判断即可【题目详解】①,当时,的反函数是,故错误;②,当时,是增函数,故错误;③,不是周期函数,故错误;④,与都是奇函数,故正确故答案为④【题目点拨】本题考查正弦函数及其反函数的性质,熟记其基本性质是关键,是基础题15、15【解题分析】试题分析:程序执行中的数据变化如下:,输出考点:程序语句16、【解题分析】由,两边同除以得,由余弦定理可得是锐角,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0.4(2)【解题分析】

(1)从频率分布直方图中计算出前四组矩形面积之和,即为所求概率;(2)列举出全部的基本事件,并确定出基本事件的总数,然后从中找出事件“至少有名骑手选择方案(1)”所包含的基本事件数,最后利用古典概型的概率公式可计算出结果。【题目详解】(1)设事件为“随机选取一天,这一天该连锁店的骑手的人均日快递业务量不少于单”依题意,连锁店的人均日快递业务量不少于单的频率分别为:因为所以估计为;(2)设事件为“从四名骑手中随机选取2人,至少有1名骑手选择方案(1)”从四名新聘骑手中随机选取2名骑手,有6种情况,即{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}其中至少有1名骑手选择方案()的情况为{甲,乙},{甲,丙},,{甲,丁},{乙,丙},{乙,丁},所以。【题目点拨】本题考查频率分布直方图以及古典概型概率的计算,在频率分布直方图的问题中要注意:(1)每组矩形的面积等于该组数据的频率;(2)所有矩形的面积之和为。18、(1)(2)【解题分析】

(1)根据,由正弦定理化角为边,得,再根据余弦定理即可求出角C;(2)由余弦定理可得,又,结合基本不等式可求得.由中点公式的向量式得,再利用数量积的运算,即可求出的最大值.【题目详解】(1)依题意得,,由正弦定理得,,即,由余弦定理得,,又因为,所以.(2)∵,,∴,即.∵为中点,所以,∴当且仅当时,等号成立.所以的最大值为.【题目点拨】本题主要考查利用正、余弦定理解三角形,以及利用中点公式的向量式结合基本不等式解决中线的最值问题,意在考查学生的逻辑推理和数学运算能力,属于中档题.19、(1);(2)【解题分析】

(1)由向量垂直的坐标运算求出,再构造齐次式求解即可;(2)先由向量的模的运算求得,再由求解即可.【题目详解】解:(1)若,则,得,所以;(2)因为,,则,因为,所以,即,化简得,即,所以,因为,所以,则,所以,,所以,故.【题目点拨】本题考查了三角函数构造齐次式求值,重点考查了两角差的正弦公式及二倍角公式,属中档题.20、(1)23;(2)(i)2,0.0174【解题分析】

(1)根据频率分布直方图求出前2组中的人数,由分层抽样得抽取的人数,然后把6人编号,可写出任取2人的所有组合,也可得出获赠智能手机的2人月薪都不低于1.75万元的所有组合,从而可计算出概率.(2)根据频率分布直方图计算出均值和方差,然后求出区间Ω,结合频率分布直方图可计算出两方案收取的费用.【题目详解】(1)第一组有0.2×0.1×100=2人,第二组有1.0×0.1×100=10人.按照分层抽样抽6人时,第一组抽1人,记为A,第二组抽5人,记为B,C,D,E,F.从这6人中抽2人共有15种:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F).获赠智能手机的2人月薪都不低于1.75万元的10种:(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F).于是获赠智能手机的2人月薪都超过1.75万元的概率P=10(2)(i)这100人月薪收入的样本平均数x和样本方差s2分别是s2(ii)方案一:s=月薪落在区间Ω左侧收活动费用约为(0.02+0.10)×400×50÷10000=0.24(万元);月薪落在区间Ω收活动费用约为(0.24+0.31+0.20)×600×50÷10000=2.25(万元);月薪落在区间Ω右侧收活动费用约为(0.09+0.04)×800×50÷10000=0.52(万

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论