江苏省盐城市景山中学2024届数学高一下期末预测试题含解析_第1页
江苏省盐城市景山中学2024届数学高一下期末预测试题含解析_第2页
江苏省盐城市景山中学2024届数学高一下期末预测试题含解析_第3页
江苏省盐城市景山中学2024届数学高一下期末预测试题含解析_第4页
江苏省盐城市景山中学2024届数学高一下期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市景山中学2024届数学高一下期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量a→=(2,0),|b→|=1,a→⋅A.2π3 B.π3 C.π2.已知a,b是正实数,且,则的最小值为()A. B. C. D.3.在锐角中,内角,,所对的边分别为,,,若的面积为,且,则的周长的取值范围是A. B.C. D.4.若,则下列不等式中不正确的是().A. B. C. D.5.已知,向量,则向量()A. B. C. D.6.已知数列{an}的前n项和为Sn,Sn=2aA.145 B.114 C.87.设全集,集合,,则()A. B.C. D.8.直线l:x+y﹣1=0与圆C:x2+y2=1交于两点A、B,则弦AB的长度为()A.2 B. C.1 D.9.已知圆与直线及都相切,圆心在直线上,则圆的方程为()A. B.C. D.10.办公室装修一新,放些植物花草可以清除异味,公司提供绿萝、文竹、碧玉、芦荟4种植物供员工选择,每个员工任意选择2种,则员工甲和乙选择的植物全不同的概率为:A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为________.12.已知向量,满足,且在方向上的投影是,则实数_______.13.为了研究问题方便,有时将余弦定理写成:,利用这个结构解决如下问题:若三个正实数,满足,,,则_______.14.用秦九韶算法求多项式当时的值的过程中:,__.15.等比数列的前项和为,若,,成等差数列,则其公比为_________.16.记Sn为等比数列{an}的前n项和.若,则S5=____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.使用支付宝和微信支付已经成为广大消费者最主要的消费支付方式,某超市通过统计发现一周内超市每天的净利润(万元)与每天使用支付宝和微信支付的人数(千人)具有线性相关关系,并得到最近一周的7组数据如下表,并依此作为决策依据.(1)作出散点图,并求出回归方程(,精确到);(2)超市为了刺激周一消费,拟在周一开展使用支付宝和微信支付随机抽奖活动,总奖金7万元.根据市场调查,抽奖活动能使使用支付宝和微信支付消费人数增加7千人,试决策超市是否有必要开展抽奖活动?(3)超市管理层决定:从周一到周日,若第二天的净利润比前一天增长超过两成,则对全体员工进行奖励,在(Ⅱ)的决策下,求全体员工连续两天获得奖励的概率.参考数据:,,,.参考公式:,,.18.如图,是的直径,所在的平面,是圆上一点,,.(1)求证:平面平面;(2)求直线与平面所成角的正切值.19.若,讨论关于x的方程在上的解的个数.20.在△中,若.(Ⅰ)求角的大小;(Ⅱ)若,,求△的面积.21.已知向量,,且.(1)求向量在上的投影;(2)求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

直接利用向量夹角公式得到答案.【题目详解】解:向量a→=(2,0),|b→|=1,a可得cos<a→则a→与b的夹角为:2π故选:A.【题目点拨】本题考查向量的数量积的应用,向量的夹角的求法,是基本知识的考查.2、B【解题分析】

设,则,逐步等价变形,直到可以用基本不等式求最值,即可得到本题答案.【题目详解】由,得,设,则,所以.故选:B【题目点拨】本题主要考查利用基本不等式求最值,化简变形是关键,考查计算能力,属于中等题.3、C【解题分析】

首先根据面积公式和余弦定理可将已知变形为,,然后根据正弦定理,将转化为,利用,化简为,再根据三角形是锐角三角形,得到的范围,转化为三角函数求取值范围的问题.【题目详解】因为的面积为,所以,所以,由余弦定理可得,则,即,所以.由正弦定理可得,所以.因为为锐角三角形,所以,所以,则,即.故的周长的取值范围是.【题目点拨】本题考查了正余弦定理和三角形面积公式,以及辅助角公式和三角函数求取值范围的问题,属于中档题型,本题需认真审题,当是锐角三角形时,需满足三个角都是锐角,即.4、D【解题分析】

先判断出的大小关系,然后根据不等式的性质以及基本不等式逐项判断.【题目详解】由,得,,,故D不正确,C正确;,,,故A正确;,,,取等号时,故B正确,故选D.【题目点拨】本题考查利用不等式性质以及基本不等式判断不等式是否成立,难度一般.注意使用基本不等式计算最值时,取等号的条件一定要记得添加.5、A【解题分析】

由向量减法法则计算.【题目详解】.故选A.【题目点拨】本题考查向量的减法法则,属于基础题.6、B【解题分析】

由Sn=2an-2,可得Sn-1=2an-1-2两式相减可得公比的值,由S1=2a1-2=【题目详解】因为Sn=2a两式相减化简可得an公比q=a由S1=2a∵a则4×2m+n-2=64∴1当且仅当nm=9mn时取等号,此时∵m,n取整数,∴均值不等式等号条件取不到,则1m验证可得,当m=2,n=4时,1m+9【题目点拨】本题主要考查等比数列的定义与通项公式的应用以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).7、A【解题分析】

进行交集、补集的运算即可.【题目详解】∁UB={x|﹣2<x<1};∴A∩(∁UB)={x|﹣1<x<1}.故选:A.【题目点拨】考查描述法的定义,以及交集、补集的运算.8、B【解题分析】

利用直线和圆相交所得弦长公式,计算出弦长.【题目详解】圆的圆心为,半径为,圆心到直线的距离为,所以.故选:B【题目点拨】本小题主要考查直线和圆相交所得弦长的计算,属于基础题.9、B【解题分析】

由平行线间的距离公式求出圆的直径,然后设出圆心,由点到两条切线的距离都等于半径,求出,即可求得圆的方程.【题目详解】因为两条直线与平行,所以它们之间的距离即为圆的直径,所以,所以.设圆心坐标为,则点到两条切线的距离都等于半径,所以,,解得,故圆心为,所以圆的标准方程为.故选:.【题目点拨】本题主要考查求解圆的方程,同时又进一步考查了直线与圆的位置关系,圆的切线性质等.本题也注重考查审题能力,分析问题和解决问题的能力.难度较易.10、A【解题分析】

从公司提供的4中植物中任意选择2种,求得员工甲和乙共有种选法,再由任选2种有种,得到员工甲和乙选择的植物全不同有种选法,利用古典概型的概率计算公式,即可求解.【题目详解】由题意,从公司提供绿萝、文竹、碧玉、芦荟4种植物每个员工任意选择2种,则员工甲和乙共有种不同的选法,又从公司提供绿萝、文竹、碧玉、芦荟4种植物中,任选2种,共有种选法,则员工甲和乙选择的植物全不同,共有种不同的选法,所以员工甲和乙选择的植物全不同的概率为,故选A.【题目点拨】本题主要考查了古典概型及其概率的计算,以及排列、组合的应用,其中解答中认真审题,合理利用排列、组合求得基本事件的个数,利用古典概型的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

利用反三角函数的单调性即可求解.【题目详解】函数是定义在上的增函数,函数在区间上单调递增,,,函数的值域是.故答案为:【题目点拨】本题考查了反三角函数的单调性以及反三角函数值,属于基础题.12、1【解题分析】

在方向上的投影为,把向量坐标代入公式,构造出关于的方程,求得.【题目详解】因为,所以,解得:,故填:.【题目点拨】本题考查向量的数量积定义中投影的概念、及向量数量积的坐标运算,考查基本运算能力.13、【解题分析】

设的角、、的对边分别为、、,在内取点,使得,设,,,利用余弦定理得出的三边长,由此计算出的面积,再利用可得出的值.【题目详解】设的角、、的对边分别为、、,在内取点,使得,设,,,由余弦定理得,,同理可得,,,则,的面积为,另一方面,解得,故答案为.【题目点拨】本题考查余弦定理的应用,问题的关键在于将题中的等式转化为余弦定理,并转化为三角形的面积来进行计算,考查化归与转化思想以及数形结合思想,属于中等题.14、1【解题分析】

f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,进而得出.【题目详解】f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,当x=2时,v0=5,v1=5×2+2=12,v2=12×2+3=27,v3=27×2﹣2=1.故答案为:1.【题目点拨】本题考查了秦九韶算法,考查了推理能力与计算能力,属于基础题.15、【解题分析】试题分析:、、成等差数列考点:1.等差数列性质;2.等比数列通项公式16、.【解题分析】

本题根据已知条件,列出关于等比数列公比的方程,应用等比数列的求和公式,计算得到.题目的难度不大,注重了基础知识、基本计算能力的考查.【题目详解】设等比数列的公比为,由已知,所以又,所以所以.【题目点拨】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析;(3)【解题分析】

(1)通过表格描点即可,先计算和,然后通过公式计算出线性回归方程;(2)先计算活动开展后使用支付宝和微信支付的人数为(千人),代入(1)问得到结果;(3)先判断周一到周日全体员工只有周二、周三、周四、周日获得奖励,从而确定基本事件,再找出连续两天获得奖励的基本事件,故可计算出全体员工连续两天获得奖励的概率.【题目详解】(1)散点图如图所示,关于的回归方程为(2)活动开展后使用支付宝和微信支付的人数为(千人)由(1)得,当时,此时超市的净利润约为,故超市有必要开展抽奖活动(3)由于,,,,,,故从周一到周日全体员工只有周二、周三、周四、周日获得奖励从周一到周日中连续两天,基本事件为(周一、周二),(周二、周三),(周三、周四),(周四、周五),(周五、周六),(周六、周日),共6个基本事件连续两天获得奖励的基本事件为(周二、周三),(周三、周四),共2个基本事件故全体员工连续两天获得奖励的概率为【题目点拨】本题主要考查线性回归方程,古典概率的计算,意在考查学生的阅读理解能力和分析能力,难度不大.18、(1)证明见解析;(2)2.【解题分析】

(1)首先证明平面,利用线面垂直推出平面平面;(2)找到直线与平面所成角所在三角形,利用三角形边角关系求解即可.【题目详解】(1)∵是直径,∴,即,又∵所在的平面,在所在的平面内,∴,∴平面,又平面,∴平面平面;(2)∵平面,∴直线与平面所成角即,设,∵,∴,∴,∴.【题目点拨】本题主要考查了面面垂直的证明,直线与平面所成角的求解,属于一般题.19、答案不唯一,见解析【解题分析】

首先将方程化简为,再画出的图像,根据和交点的个数即可求出方程根的个数.【题目详解】由题知:,,.令,,图像如图所示:当或,即或时,无解,即方程无解.当,即时,得到,则方程有两个解.当,即时,得到在有两个解,则方程有四个解.当,即时,得到或,则方程有四个解.当,即时,得到在有一个解,则方程有两个解.当,即时,得到,则方程有一个解.综上所述:当或时,即方程无解,当时,方程有一个解.当或时,方程有两个解.当时,方程有四个解.【题目点拨】本题主要考查函数的零点问题,同时考查了分类讨论的思想,数形结合为解题的关键,属于难题.20、(Ⅰ)(Ⅱ)【解题分析】

(I)利用正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论