2024届吉林省舒兰市一中数学高一第二学期期末质量跟踪监视模拟试题含解析_第1页
2024届吉林省舒兰市一中数学高一第二学期期末质量跟踪监视模拟试题含解析_第2页
2024届吉林省舒兰市一中数学高一第二学期期末质量跟踪监视模拟试题含解析_第3页
2024届吉林省舒兰市一中数学高一第二学期期末质量跟踪监视模拟试题含解析_第4页
2024届吉林省舒兰市一中数学高一第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省舒兰市一中数学高一第二学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆C与直线和直线都相切,且圆心C在直线上,则圆C的方程是()A. B.C. D.2.已知点,,直线的方程为,且与线段相交,则直线的斜率的取值范围为()A. B. C. D.3.若,则t=()A.32 B.23 C.14 D.134.若圆与圆相切,则实数()A.9 B.-11 C.-11或-9 D.9或-115.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B. C. D.6.已知,则的值等于()A. B. C. D.7.如果成等差数列,成等比数列,那么等于()A. B. C. D.8.设为锐角,,若与共线,则角()A.15° B.30° C.45° D.60°9.圆与圆的位置关系为()A.内切 B.相交 C.外切 D.相离10.点到直线的距离是()A. B. C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在等腰直角三角形ABC中,,,以AB为直径在外作半圆O,P是半圆弧AB上的动点,点Q在斜边BC上,若,则的取值范围是________.12.若数列满足,,则______.13.已知函数,对于上的任意,,有如下条件:①;②;③;④.其中能使恒成立的条件序号是__________.14.已知等差数列中,首项,公差,前项和,则使有最小值的_________.15.在等差数列中,若,则的前13项之和等于______.16.设ω为正实数.若存在a、b(π≤a<b≤2π),使得三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设为正项数列的前项和,且满足.(1)求证:为等差数列;(2)令,,若恒成立,求实数的取值范围.18.某公司为了提高职工的健身意识,鼓励大家加入健步运动,要求200名职工每天晚上9:30上传手机计步截图,对于步数超过10000的予以奖励.图1为甲乙两名职工在某一星期内的运动步数统计图,图2为根据这星期内某一天全体职工的运动步数做出的频率分布直方图.(1)在这一周内任选两天检查,求甲乙两人两天全部获奖的概率;(2)请根据频率分布直方图,求出该天运动步数不少于15000的人数,并估计全体职工在该天的平均步数;(3)如果当天甲的排名为第130名,乙的排名为第40名,试判断做出的是星期几的频率分布直方图.19.如图,三棱柱的侧面是边长为的菱形,,且.(1)求证:;(2)若,当二面角为直二面角时,求三棱锥的体积.20.已知函数.(1)若,且对任意的,恒成立,求实数的取值范围;(2)求,解关于的不等式.21.如图,求阴影部分绕旋转一周所形成的几何体的表面积和体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

设出圆的方程,利用圆心到直线的距离列出方程求解即可【题目详解】∵圆心在直线上,∴可设圆心为,设所求圆的方程为,则由题意,解得∴所求圆的方程为.选B【题目点拨】直线与圆的问题绝大多数都是转化为圆心到直线的距离公式进行求解2、A【解题分析】

直线过定点,利用直线的斜率公式分别计算出直线,和的斜率,根据斜率的单调性即可求斜率的取值范围.【题目详解】解:直线整理为即可知道直线过定点,作出直线和点对应的图象如图:,,,,,要使直线与线段相交,则直线的斜率满足或,或即直线的斜率的取值范围是,故选.【题目点拨】本题考查直线斜率的求法,利用数形结合确定直线斜率的取值范围,属于基础题.3、B【解题分析】

先计算得到,再根据得到等式解得答案.【题目详解】故答案选B【题目点拨】本题考查了向量的计算,意在考查学生对于向量运算法则的灵活运用及计算能力.4、D【解题分析】

分别讨论两圆内切或外切,圆心距和半径之间的关系即可得出结果.【题目详解】圆的圆心坐标为,半径;圆的圆心坐标为,半径,讨论:当圆与圆外切时,,所以;当圆与圆内切时,,所以,综上,或.【题目点拨】本题主要考查圆与圆位置关系,由两圆相切求参数的值,属于基础题型.5、A【解题分析】

正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积6、B【解题分析】.7、D【解题分析】

因为成等差数列,所以,因为成等比数列,所以,因此.故选D8、B【解题分析】由题意,,又为锐角,∴.故选B.9、B【解题分析】试题分析:两圆的圆心距为,半径分别为,,所以两圆相交.故选C.考点:圆与圆的位置关系.10、D【解题分析】

根据点到直线的距离求解即可.【题目详解】点到直线的距离是.故选:D【题目点拨】本题主要考查了点到线的距离公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

建立直角坐标系,得出的坐标,利用数量积的坐标表示得出,结合正弦函数的单调性得出的取值范围.【题目详解】取中点为,建立如下图所示的直角坐标系则,设,,则,则设点,则,则当,即时,取最大值当,即时,取最小值则的取值范围是故答案为:【题目点拨】本题主要考查了利用数量积求参数以及求正弦型函数的最值,属于较难题.12、【解题分析】

利用递推公式再递推一步,得到一个新的等式,两个等式相减,再利用累乘法可求出数列的通项公式,利用所求的通项公式可以求出的值.【题目详解】得,,所以有,因此.故答案为:【题目点拨】本题考查了利用递推公式求数列的通项公式,考查了累乘法,考查了数学运算能力.13、③④【解题分析】∵g(x)=[(﹣x)2﹣cos(﹣x)]=[x2﹣cosx]=g(x),∴g(x)是偶函数,∴g(x)图象关于y轴对称,∵g′(x)=x+sinx>0,x∈(0,],∴g(x)在(0,]上是增函数,在[﹣,0)是减函数,故③x1>|x2|;④时,g(x1)>g(x2)恒成立,故答案为:③④.点睛:此题考查的是函数的单调性的应用;已知表达式,根据表达式判断函数的单调性,和奇偶性,偶函数在对称区间上的单调性相反,根据单调性的定义可知,增函数自变量越大函数值越大,减函数自变量越大函数值越小。14、或【解题分析】

求出,然后利用,求出的取值范围,即可得出使得有最小值的的值.【题目详解】,令,解得.因此,当或时,取得最小值.故答案为:或.【题目点拨】本题考查等差数列前项和的最小值求解,可以利用二次函数性质求前项和的最小值,也可以转化为数列所有非正数项相加,考查计算能力,属于中等题.15、【解题分析】

根据题意,以及等差数列的性质,先得到,再由等差数列的求和公式,即可求出结果.【题目详解】因为是等差数列,,所以,即,记前项和为,则.故答案为:【题目点拨】本题主要考查等差数列前项和的基本量的运算,熟记等差数列的性质以及求和公式即可,属于基础题型.16、ω∈[【解题分析】

由sinωa+sinωb=2⇒sinωa=sinωb=1.而[ωa,ωb]⊆[ωπ,2ωπ]【题目详解】由sinωa+而[ωa,ωb]⊆[ωπ,2ωπ],故已知条件等价于:存在整数ωπ当ω≥4时,区间[ωπ,2ωπ]的长度不小于4π当0<ω<4时,注意到,[ωπ故只要考虑如下几种情形:(1)ωπ≤π2<(2)ωπ≤5(3)ωπ≤9综上,并注意到ω≥4也满足条件,知ω∈[9故答案为:ω∈[【题目点拨】本题主要考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解题分析】

(1)根据与的关系,再结合等差数列的定义,即可证明;(2)由(1)可求出,采用裂项相消法求出,要恒成立,只需即可求出.【题目详解】(1)由题知:,当得:,解得:当,①②得:,即.是以为首项,为公差的等差数列.(2)由(1)知:所以即.【题目点拨】本题主要考查与的关系,等差数列的定义,裂项相消法以及恒成立问题的解法的应用,意在考查学生的数学运算能力,属于基础题.18、(1),(2)80人,13.25千步,(3)星期二【解题分析】

(1)根据统计图统计出甲乙两人合格的天数,再计算全部获奖概率;(2)根据频率分布直方图求出人数及平均步数;(3)根据频率分布直方图计算出甲乙的步数从而判断出星期几.【题目详解】(1)由统计图可知甲乙两人步数超过10000的有星期一、星期二、星期五、星期天设事件A为甲乙两人两天全部获奖,则(2)由图可知,解得所以该天运动步数不少于15000的人数为(人)全体职工在该天的平均步数为:(千步)(3)因为假设甲的步数为千步,乙的步数为千步由频率分布直方图可得:,解得,解得所以可得出的是星期二的频率分布直方图.【题目点拨】本题考查利用频率分布直方图来求平均数和概率,要注意计算的准确性,较简单.19、(1)见解析(2)【解题分析】

(1)利用直线与平面垂直的判定,结合三角形全等判定,得到,再次结合三角形全等,即可.(2)法一:建立坐标系,分别计算的法向量,结合两向量夹角为直角,计算出的值,然后结合,即可.法二:设出OA=x,用x分别表示AB,BD,AD,结合,建立方程,计算x,结合,即可.【题目详解】(1)连结,交于点,连结,因为侧面是菱形,所以,又因为,,所以平面,而平面,所以,因为,所以,而,所以,.(2)因为,,所以,(法一)以为坐标原点,所以直线为轴,所以直线为轴,所以直线为轴建立如图所示空间直角坐标系,设,则,,,,,所以,,,设平面的法向量,所以令,则,,取,设平面的法向量,所以令,则,,取,依题意得,解得.所以.(法二)过作,连结,由(1)知,所以且,所以是二面角的平面角,依题意得,,所以,设,则,,又由,,所以由,解得,所以.【题目点拨】本道题考查了直线与平面垂直判定,考查了利用空间向量解决二面角问题,难度较难.20、(1)(2)见解析【解题分析】

(1)由题意,若,则函数关于对称,根据二次函数对称性,可求,代入化简得在上恒成立,由,知当为最小值,根据恒成立思想,令最小值,即可求解;(2)根据题意,由,化简一元二次不等式为,讨论参数范围,写出解集即可.【题目详解】解:(1)若,所以函数对称轴,.,即在恒成立,即在上恒成立所以,又,故(2),所以;原不等式变为,因为,所以.所以当,即时,解为;当时,解集为;当,即时,解为综上,当时,不等式的解集为;当时,不等式的解集为必;当时,不等式的解隼为【题目点拨】本题考查(1)函数恒成立问题;(2)含参一元二次不等式的解法;考查计算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论