版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省邢台八中数学高一下期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列中,,,则等于()A. B. C. D.2.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是()A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱3.已知是等差数列的前项和,.若对恒成立,则正整数构成的集合是()A. B. C. D.4.我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为A.分 B.分 C.分 D.分5.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件。为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A.9 B.10 C.12 D.136.记等差数列的前n项和为.若,则()A.7 B.8 C.9 D.107.等比数列的前项和、前项和、前项和分别为,则().A. B.C. D.8.在下列结论中,正确的为()A.两个有共同起点的单位向量,其终点必相同B.向量与向量的长度相等C.向量就是有向线段D.零向量是没有方向的9.下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则10.已知直线:是圆的对称轴.过点作圆的一条切线,切点为,则()A.2 B. C.6 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数fx=cosx+2cosx,12.已知点和在直线的两侧,则a的取值范围是__________.13.在半径为的球中有一内接正四棱柱(底面是正方形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是__________.14.若正实数满足,则的最小值为______.15.数列中,,以后各项由公式给出,则等于_____.16.____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数在上的最大值为3.(1)求的值及函数的单调递增区间;(2)若锐角中角所对的边分别为,且,求的取值范围.18.已知数列的前项和(1)求的通项公式;(2)若数列满足:,求的前项和(结果需化简)19.在中,角的对边分别为,已知,,.(1)求的值;(2)求和的值.20.已知函数,(1)求函数的最小正周期;(2)设的内角的对边分别为,且,,,求的面积.21.如图,在直三棱柱中,,,是棱的中点.(1)求证:;(2)求证:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
变形为,利用累加法和裂项求和计算得到答案.【题目详解】故选:A【题目点拨】本题考查了累加法和裂项求和,意在考查学生对于数列方法的灵活应用.2、B【解题分析】试题分析:由三视图中的正视图可知,由一个面为直角三角形,左视图和俯视图可知其它的面为长方形.综合可判断为三棱柱.考点:由三视图还原几何体.3、A【解题分析】
先分析出,即得k的值.【题目详解】因为因为所以.所以,所以正整数构成的集合是.故选A【题目点拨】本题主要考查等差数列前n项和的最小值的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.4、B【解题分析】
首先“冬至”时日影长度最大,为1350分,“夏至”时日影长度最小,为160分,即可求出,进而求出立春”时日影长度为.【题目详解】解:一年有二十四个节气,每相邻两个节气之间的日影长度差为分,且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分.,解得,“立春”时日影长度为:分.故选B.【题目点拨】本题考查等差数列的性质等基础知识,考查运算求解能力,利用等差数列的性质直接求解.5、D【解题分析】试题分析::∵甲、乙、丙三个车间生产的产品件数分别是120,80,60,∴甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,丙车间生产产品所占的比例,因为样本中丙车间生产产品有3件,占总产品的,所以样本容量n=3÷=1.考点:分层抽样方法6、D【解题分析】
由可得值,可得可得答案.【题目详解】解:由,可得,所以,从而,故选D.【题目点拨】本题主要考察等差数列的性质及等差数列前n项的和,由得出的值是解题的关键.7、B【解题分析】
根据等比数列前项和的性质,可以得到等式,化简选出正确答案.【题目详解】因为这个数列是等比数列,所以成等比数列,因此有,故本题选B.【题目点拨】本题考查了等比数列前项和的性质,考查了数学运算能力.8、B【解题分析】
逐一分析选项,得到答案.【题目详解】A.单位向量的方向任意,所以当起点相同时,终点在以起点为圆心的单位圆上,终点不一定相同,所以选项不正确;B.向量与向量是相反向量,方向相反,长度相等,所以选项正确;C.向量是既有大小,又有方向的向量,可以用有向线段表示,但不能说向量就是有向线段,所以选项不正确;D.规定零向量的方向任意,而不是没有方向,所以选项不正确.故选B.【题目点拨】本题考查了向量的基本概念,属于基础题型.9、D【解题分析】
A项中,需要看分母的正负;B项和C项中,已知两个数平方的大小只能比较出两个数绝对值的大小.【题目详解】A项中,若,则有,故A项错误;B项中,若,则,故B项错误;C项中,若则即,故C项错误;D项中,若,则一定有,故D项正确.故选:D【题目点拨】本题主要考查不等关系与不等式,属于基础题.10、C【解题分析】试题分析:直线l过圆心,所以,所以切线长,选C.考点:切线长二、填空题:本大题共6小题,每小题5分,共30分。11、(0,1)【解题分析】
画出函数f(x)在x∈0,2【题目详解】解:画出函数y=cosx+2|cosx|=3cos以及直线y=k的图象,如图所示;由f(x)的图象与直线y=k有且仅有四个不同的交点,可得0<k<1.故答案为:(0,1).【题目点拨】本题主要考查利用分段函数及三角函数的性质求参数,数形结合是解题的关键.12、【解题分析】试题分析:若点A(3,1)和点B(4,6)分别在直线3x-2y+a=0两侧,则将点代入直线中是异号,则[3×3-2×1+a]×[3×4-2×6+a]<0,即(a+7)a<0,解得-7<a<0,故填写-7<a<0考点:本试题主要考查了二元一次不等式与平面区域的运用.点评:解决该试题的关键是根据A、B在直线两侧,则A、B坐标代入直线方程所得符号相反构造不等式.13、【解题分析】
根据正四棱柱外接球半径的求解方法可得到正四棱柱底面边长和高的关系,利用基本不等式得到,得到侧面积最大值为;根据球的表面积公式求得球的表面积,作差得到结果.【题目详解】设球内接正四棱柱的底面边长为,高为则球的半径:正四棱柱的侧面积:球的表面积:当正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差为:本题正确结果:【题目点拨】本题考查多面体的外接球的相关问题的求解,关键是能够根据外接球半径构造出关于正棱柱底面边长和高的关系式,利用基本不等式求得最值;其中还涉及到球的表面积公式的应用.14、【解题分析】
由得,将转化为,整理,利用基本不等式即可求解。【题目详解】因为,所以.所以当且仅当,即:时,等号成立。所以的最小值为.【题目点拨】本题主要考查了构造法及转化思想,考查基本不等式的应用及计算能力,属于基础题。15、【解题分析】
可以利用前项的积与前项的积的关系,分别求得第三项和第五项,即可求解,得到答案.【题目详解】由题意知,数列中,,且,则当时,;当时,,则,当时,;当时,,则,所以.【题目点拨】本题主要考查了数列的递推关系式的应用,其中解答中熟练的应用递推关系式是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解题分析】
在分式的分子和分母中同时除以,然后利用常见数列的极限可计算出所求极限值.【题目详解】由题意得.故答案为:.【题目点拨】本题考查数列极限的计算,熟悉一些常见数列的极限是解题的关键,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),函数的单调递增区间为;(2).【解题分析】
(1)运用降幂公式和辅助角公式,把函数的解析式化为正弦型函数解析式形式,根据已知,可以求出的值,再结合正弦型函数的性质求出函数的单调递增区间;(2)由(1)结合已知,可以求出角的值,通过正弦定理把问题的取值范围转化为两边对角的正弦值的比值的取值范围,结合已知是锐角三角形,三角形内角和定理,最后求出的取值范围.【题目详解】解:(1)由已知,所以因此令得因此函数的单调递增区间为(2)由已知,∴由得,因此所以因为为锐角三角形,所以,解得因此,那么【题目点拨】本题考查了降幂公式、辅助角公式,考查了正弦定理,考查了正弦型三角函数的单调性,考查了数学运算能力.18、(1);(2);【解题分析】
(1)运用数列的递推式得时,,时,,化简计算可得所求通项公式;(2)求得,运用数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.【题目详解】(1)可得时,则(2)数列满足,可得,即,前项和两式相减可得化简可得【题目点拨】本题考查数列的递推式的运用,考查数列的错位相减法求和,以及等比数列的求和公式,考查运算能力,属于中档题.19、(1);(2),【解题分析】
(1)由,求得,由大边对大角可知均为锐角,利用同角三角函数关系求得,利用两角和差正弦公式求得结果;(2)根据正弦定理得到的关系,代入可求得;利用余弦定理求得.【题目详解】(1)(2)由正弦定理可得:又,解得:,则由余弦定理可得:【题目点拨】本题考查解三角形的相关知识,涉及到同角三角函数关系、两角和差正弦公式、大边对大角的关系、正弦定理和余弦定理的应用等知识,属于常考题型.20、(1);(2).【解题分析】
(1)利用二倍角和辅助角公式可将函数整理为,利用求得结果;(2)由,结合的范围可求得;利用两角和差正弦公式和二倍角公式化简已知等式,可求得;分别在和两种情况下求解出各边长,从而求得三角形面积.【题目详解】(1)的最小正周期:(2)由得:,即:,,解得:,由得:即:若,即时,则:若,则由正弦定理可得:由余弦定理得:解得:综上所述,的面积为:【题目点拨】本题考查正弦型函数的最小正周期、三角形面积的求解,涉及到正弦定理、余弦定理、三角形面积公式、两角和差正弦公式、二倍角公式、辅助角公式的应用,考查学生对于三角函数、三角恒等变换和解三角形知识的掌握.21、(1)见详解;(2)见详解.【解题分析】
(1)连接AC1,设AC1∩A1C=O,连接OD,可求O为AC1的中点,D是棱AB的中点,利用中位线的性质可证OD∥BC1,根据线面平行的判断定理即可证明BC1∥平面A1CD.(2)由(1)可证平行四边形ACC1A1是菱形,由其性质可得AC1⊥A1C,利用线面垂直的性质可证AB⊥AA1,根据AB⊥AC,利用线面垂直的判定定理可证AB⊥平面ACC1A1,利用线面垂直的性质可证AB⊥A1C,又AC1⊥A1C,根据线面垂直的判定定理可证A1C⊥平面ABC1,利用线面垂直的性质即可证明BC1⊥A1C.【题目详解】(1)连接AC1,设AC1∩A1C=O,连接OD,在直三棱柱ABC﹣A1B1C1中,侧面ACC1A1是平行四边形,所以:O为AC1的中点,又因为:D是棱AB的中点,所以:OD∥BC1,又因为:BC1⊄平面A1CD,OD⊂平面A1CD,所以:BC1∥平面A1CD.(2)由(1)可知:侧面ACC1A1是平行四边形,因为:AC=AA1,所以:平行四边形ACC1A1是菱形,所以:AC1⊥A1C,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度电影投资融资居间服务合同
- 水源管道规划方案
- 立杆架线施工方案
- 桥面吊装施工方案
- 2024食品公司产品线扩建合同
- 有机发光二极管的驱动与控制-深度研究
- 大数据在健保代理应用-深度研究
- 二零二四年度债权转让与债权处置三方执行合同3篇
- 市政道路围挡施工方案
- 二零二四年度艺术品拍卖及买卖代理合同3篇
- 机电安装工程安全管理
- 2024年上海市第二十七届初中物理竞赛初赛试题及答案
- 信息技术部年终述职报告总结
- 高考满分作文常见结构完全解读
- 理光投影机pj k360功能介绍
- 六年级数学上册100道口算题(全册完整版)
- 八年级数学下册《第十九章 一次函数》单元检测卷带答案-人教版
- 帕萨特B5维修手册及帕萨特B5全车电路图
- 小学五年级解方程应用题6
- 年月江西省南昌市某综合楼工程造价指标及
- 作物栽培学课件棉花
评论
0/150
提交评论