版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省十校联盟2024届数学高一第二学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设等比数列的前项和为,若,,则()A.14 B.18 C.36 D.602.在数列an中,an+1=an+a(n∈N*,a为常数),若平面上的三个不共线的非零向量OA、OB、OC满足OC=a1A.1005 B.1006 C.2010 D.20123.在等差数列中,已知,数列的前5项的和为,则()A. B. C. D.4.下列不等式中正确的是()A.若,,则B.若,则C.若,则D.若,则5.已知函数,其图象与直线相邻两个交点的距离为,若对于任意的恒成立,则的取值范围是()A. B. C. D.6.已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A.1 B.2 C.3 D.47.若,则以下不等式一定成立的是()A. B. C. D.8.已知数列满足若,则数列的第2018项为()A. B. C. D.9.圆心坐标为,半径长为2的圆的标准方程是()A. B.C. D.10.已知函数,则()A.2 B.-2 C.1 D.-1二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列为等比数列,,,则数列的公比为__________.12.已知圆Ω过点A(5,1),B(5,3),C(﹣1,1),则圆Ω的圆心到直线l:x﹣2y+1=0的距离为_____.13.在等比数列中,已知,则=________________.14.P是棱长为4的正方体的棱的中点,沿正方体表面从点A到点P的最短路程是_______.15.已知是等差数列,,,则的前n项和______.16.已知无穷等比数列满足:对任意的,,则数列公比的取值集合为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.将边长分别为、、、…、、、…的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第个、第个、……、第个阴影部分图形.设前个阴影部分图形的面积的平均值为.记数列满足,(1)求的表达式;(2)写出,的值,并求数列的通项公式;(3)定义,记,且恒成立,求的取值范围.18.某工厂共有200名工人,已知这200名工人去年完成的产品数都在区间(单位:万件)内,其中每年完成14万件及以上的工人为优秀员工,现将其分成5组,第1组、第2组第3组、第4组、第5组对应的区间分别为,,,,,并绘制出如图所示的频率分布直方图.(1)选取合适的抽样方法从这200名工人中抽取容量为25的样本,求这5组分别应抽取的人数;(2)现从(1)中25人的样本中的优秀员工中随机选取2名传授经验,求选取的2名工人在同一组的概率.19.某地区某农产品的销售量与年份有关,下表是近五年的部分统计数据:年份20102012201420162018销售量(吨)114115116116114用所给数据求年销售量(吨)与年份之间的回归直线方程,并根据所求出的直线方程预测该地区2019年该农产品的销售量.参考公式:.20.求函数的最大值21.已知函数.(1)求的单调递增区间;(2)求在区间的最大值和最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
由已知结合等比数列的求和公式可求,,q2,然后整体代入到求和公式即可求.【题目详解】∵等比数列{an}中,S2=2,S4=6,∴q≠1,则,联立可得,2,q2=2,S62×(1﹣23)=1.故选:A.【题目点拨】本题主要考查了等比数列的求和公式的简单应用,考查了整体代入的运算技巧,属于基础题.2、A【解题分析】
利用等差数列的定义可知数列an为等差数列,由向量中三点共线的结论得出a1+【题目详解】∵an+1=an∵三点A、B、C共线且该直线不过O点,OC=a1因此,S2010故选:A.【题目点拨】本题考查等差数列求和,涉及等差数列的定义以及向量中三点共线结论的应用,考查计算能力,属于中等题.3、C【解题分析】
由,可求出,结合,可求出及.【题目详解】设数列的前项和为,公差为,因为,所以,则,故.故选C.【题目点拨】本题考查了等差数列的前项和,考查了等差数列的通项公式,考查了计算能力,属于基础题.4、D【解题分析】
根据不等式的性质逐一判断即可得解.【题目详解】解:对于选项A,若,,不妨取,则,即A错误;对于选项B,若,当时,则,即B错误;对于选项C,若,不妨取,则,即C错误;对于选项D,若,则,即,,即D正确,故选:D.【题目点拨】本题考查了不等式的性质,属基础题.5、A【解题分析】由题意可得相邻最低点距离1个周期,,,,即,,即所以,包含0,所以k=0,,,,选A.【题目点拨】由于三角函数是周期周期函数,所以不等式解集一般是一系列区间并集,对于恒成立时,需要令k为几个特殊值,再与已知集合做运算.6、B【解题分析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在两条异面直线,,,,,,由面面平行的判定定理得,故正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选7、C【解题分析】
利用不等式的运算性质分别判断,正确的进行证明,错误的举出反例.【题目详解】没有确定正负,时,,所以不选A;当时,,所以不选B;当时,,所以不选D;由,不等式成立.故选C.【题目点拨】本题考查不等式的运算性质,比较法证明不等式,属于基本题.8、A【解题分析】
利用数列递推式求出前几项,可得数列是以4为周期的周期数列,即可得出答案.【题目详解】,,,数列是以4为周期的周期数列,则.故选A.【题目点拨】本题考查数列的递推公式和周期数列的应用,考查学生分析解决问题的能力,属于中档题.9、C【解题分析】
根据圆的标准方程的形式写.【题目详解】圆心为,半径为2的圆的标准方程是.故选C.【题目点拨】本题考查了圆的标准方程,故选C.10、B【解题分析】
根据分段函数的表达式,直接代入即可得到结论.【题目详解】由分段函数的表达式可知,则,故选:.【题目点拨】本题主要考查函数值的计算,根据分段函数的表达式求解是解决本题的关键,属于容易题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
设等比数列的公比为,由可求出的值.【题目详解】设等比数列的公比为,则,,因此,数列的公比为,故答案为:.【题目点拨】本题考查等比数列公比的计算,在等比数列的问题中,通常将数列中的项用首项和公比表示,建立方程组来求解,考查运算求解能力,属于基础题.12、【解题分析】
求得线段和线段的垂直平分线,求这两条垂直平分线的交点即求得圆的圆心,在求的圆心到直线的距离.【题目详解】∵A(5,1),B(5,3),C(﹣1,1),∴AB的中点坐标为(5,2),则AB的垂直平分线方程为y=2;BC的中点坐标为(2,2),,则BC的垂直平分线方程为y﹣2=﹣3(x﹣2),即3x+y﹣8=1.联立,得.∴圆Ω的圆心为Ω(2,2),则圆Ω的圆心到直线l:x﹣2y+1=1的距离为d.故答案为:【题目点拨】本小题主要考查根据圆上点的坐标求圆心坐标,考查点到直线的距离公式,属于基础题.13、【解题分析】14、【解题分析】
从图形可以看出图形的展开方式有二,一是以底棱BC,CD为轴,可以看到此两种方式是对称的,所得结果一样,另外一种是以侧棱为轴展开,即以BB1,DD1为轴展开,此两种方式对称,求得结果一样,故解题时选择以BC为轴展开与BB1为轴展开两种方式验证即可【题目详解】由题意,若以BC为轴展开,则AP两点连成的线段所在的直角三角形的两直角边的长度分别为4,6,故两点之间的距离是若以BB1为轴展开,则AP两点连成的线段所在的直角三角形的两直角边的长度分别为2,8,故两点之间的距离是故沿正方体表面从点A到点P的最短路程是cm故答案为【题目点拨】本题考查多面体和旋转体表面上的最短距离问题,求解的关键是能够根据题意把求几何体表面上两点距离问题转移到平面中来求15、【解题分析】
由,可求得公差d,进而可求得本题答案.【题目详解】设等差数列的公差为d,由题,有,解得,所以.故答案为:【题目点拨】本题主要考查等差数列的通项公式及求和公式,属基础题.16、【解题分析】
根据条件先得到:的表示,然后再根据是等比数列讨论公比的情况.【题目详解】因为,所以,即;取连续的有限项构成数列,不妨令,则,且,则此时必为整数;当时,,不符合;当时,,符合,此时公比;当时,,不符合;当时,,不符合;故:公比.【题目点拨】本题考查无穷等比数列的公比,难度较难,分析这种抽象类型的数列问题时,经常需要进行分类,可先通过列举的方式找到思路,然后再准确分析.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),,;(3).【解题分析】
(1)根据题意,分别求出每一个阴影部分图形的面积,即可得到前个阴影部分图形的面积的平均值;(2)依据递推式,结合分类讨论思想,即可求出数列的通项公式;(3)先求出的表达式,再依题意得到,分类讨论不等式恒成立的条件,取其交集,即得所求范围。【题目详解】(1)由题意有,第一个阴影部分图形面积是:;第二个阴影部分图形面积是:;第三个阴影部分图形面积是:;所以第个阴影部分图形面积是:;故;(2)由(1)知,,,所以,,当时,当时,,综上,数列的通项公式为,。(3)由(2)知,,,由题意可得,恒成立,①当时,,即,所以,②当时,,即,所以,③当时,,即,所以,综上,。【题目点拨】本题主要考查数列的通项公式求法,数列不等式恒成立问题的解法以及分类讨论思想的运用,意在考查学生逻辑推理能力及运算能力。18、(1)第1组:2;第2组:8,;第3组:9;第4组:3;第5组:3(2)【解题分析】
(1)根据频率之和为列方程,解方程求得的值.然后根据分层抽样的计算方法,计算出每组抽取的人数.(2)利用列举法,结合古典概型概率计算公式,计算出所求概率.【题目详解】(1):,.用分层抽样比较合适.第1组应抽取的人数为,第2组应抽取的人数为,第3组应抽取的人数为,第4组应抽取的人数为,第5组应抽取的人数为.(2)(1)中25人的样本中的优秀员工中,第4组有3人,记这3人分别为,第5组有3人,记这3人分别为.从这6人中随机选取2名,所有的基本事件为:,,,,,,,,,,,,,,,共有15个基本事件.选取的2名工人在同一组的基本事件有,,,,,共6个,故选取的2名工人在同一组的概率为.【题目点拨】本小题主要考查补全频率分布,考查分层抽样,考查古典概型的计算,属于基础题.19、;115.25吨【解题分析】
由表格中的数据先求出,再根据公式求得与的值,得到线性回归方程,取即可求得2019年该农产品销售量的预测值.【题目详解】由表中数据可得:,,∴,,∴所求回归直线方程为:,由此可以预测2019年该农产品的销售量为:吨.【题目点拨】本题考查线性回归方程的求法,考查计算能力,难度不大.20、最大值为5【解题分析】
本题首先可以根据同角三角函数关系以及配方将函数化简为,然后根据即可得出函数的最大值.【题目详解】,因为,所以当时,即,函数最大,令,,故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度个人法律服务委托合同4篇
- 二零二五年度路佳与配偶离婚协议:财产分配与子女抚养责任书3篇
- 2025版宿舍管理员职责聘用合同6篇
- 2025版团购民宿项目合同3篇
- 二零二五年度茅台酒经销商年度销售目标责任书3篇
- 二零二五年度宠物救助与领养支持基金合同4篇
- 二零二五年度商业地产项目购置合同书3篇
- 2025年度门窗行业绿色供应链管理服务合同8篇
- 2025年度彩钢幕墙设计与施工总承包合同3篇
- 二零二五年度宠物宠物托运服务合同规范范本4篇
- 《天润乳业营运能力及风险管理问题及完善对策(7900字论文)》
- xx单位政务云商用密码应用方案V2.0
- 农民专业合作社财务报表(三张报表)
- 安宫牛黄丸的培训
- 妇科肿瘤护理新进展Ppt
- 动土作业专项安全培训考试试题(带答案)
- 大学生就业指导(高职就业指导课程 )全套教学课件
- 死亡病例讨论总结分析
- 第二章 会展的产生与发展
- 空域规划与管理V2.0
- JGT266-2011 泡沫混凝土标准规范
评论
0/150
提交评论