版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届深圳四校发展联盟体数学高一第二学期期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某学生4次模拟考试英语作文的减分情况如下表:显然与之间有较好的线性相关关系,则其线性回归方程为()A. B.C. D.2.为了得到函数y=sin(2x+)的图象,只需将函数y=sin2x图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度3.已知扇形的圆心角,弧长为,则该扇形的面积为()A. B. C.6 D.124.等比数列中,,,则公比()A.1 B.2 C.3 D.45.已知点在第四象限,则角在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知函数,若在区间内没有零点,则的取值范围是A. B. C. D.7.已知等比数列an的公比为q,且q<1,数列bn满足bn=anA.-23 B.23 C.8.为了得到函数y=sin(2x-πA.向右平移π6个单位 B.向右平移πC.向左平移π6个单位 D.向左平移π9.在中,,,,,则()A.或 B. C. D.10.已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆是圆上的一条动直径,点是直线上的动点,则的最小值是____.12.已知数列{}满足,若数列{}单调递增,数列{}单调递减,数列{}的通项公式为____.13.设等差数列,的前项和分别为,,若,则__________.14.用列举法表示集合__________.15.若点在幂函数的图像上,则函数的反函数=________.16.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面是菱形,底面.(Ⅰ)证明:;(Ⅱ)若,求二面角的余弦值.18.已知,且与的夹角.(1)求的值;(2)记与的夹角为,求的值.19.将正弦曲线如何变换可以得到函数的图像,请写出变换过程,并画出一个周期的闭区间的函数简图.20.已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求方程的解构成的集合.21.已知函数为奇函数,且.(1)求实数a与b的值;(2)若函数,数列为正项数列,,且当,时,,设(),记数列和的前项和分别为,且对有恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
求出样本数据的中心,代入选项可得D是正确的.【题目详解】,所以这组数据的中心为,对选项逐个验证,可知只有过样本点中心.【题目点拨】本题没有提供最小二乘法的公式,所以试题的意图不是考查公式计算,而是要考查回归直线过样本点中心这一概念.2、A【解题分析】
由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【题目详解】∵,故要得到的图象,只需将函数y=sin2x,x∈R的图象向左平移个单位长度即可,故选:A.【题目点拨】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.3、A【解题分析】
可先由弧长计算出半径,再计算面积.【题目详解】设扇形半径为,则,,.故选:A.【题目点拨】本题考查扇形面积公式,考查扇形弧长公式,掌握扇形的弧长和面积公式是解题基础.4、B【解题分析】
将与用首项和公比表示出来,解方程组即可.【题目详解】因为,且,故:,且,解得:,即,故选:B.【题目点拨】本题考查求解等比数列的基本量,属基础题.5、B【解题分析】
根据第四象限内点的坐标特征,再根据正弦值、正切值的正负性直接求解即可.【题目详解】因为点在第四象限,所以有:是第二象限内的角.故选:B【题目点拨】本题考查了正弦值、正切值的正负性的判断,属于基础题.6、B【解题分析】
函数,由,可得,,因此即可得出.【题目详解】函数由,可得解得,∵在区间内没有零点,
.故选B.【题目点拨】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.7、A【解题分析】
由题可知数列{an}【题目详解】因为数列{bn}有连续四项在集合{-28,-19,-13,7,17,23}中,bn=an-1,所以数列{an}有连续四项在集合{-27,-18,-12,8,18,24}中,所以数列{an}的连续四项不同号,即【题目点拨】本题主要考查等比数列的综合应用,意在考查学生的分析能力,逻辑推理能力,分类讨论能力,难度较大.8、A【解题分析】
根据函数平移变换的方法,由2x→2x-π3即2x→2(x-π【题目详解】根据函数平移变换,由y=sin2x变换为只需将y=sin2x的图象向右平移π6【题目点拨】本题主要考查了三角函数图象的平移变换,解题关键是看自变量上的变化量,属于中档题.9、C【解题分析】
由三角形面积公式可得,进而可得解.【题目详解】在中,,,,,可得,所以,所以【题目点拨】本题主要考查了三角形的面积公式,属于基础题.10、D【解题分析】因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由题意得,==﹣=,即可求的最小值.【题目详解】圆,得,则圆心C(1,2),半径R=,如图可得:==﹣=,点是直线上,所以=()2=,∴的最小值是=.故答案为:.【题目点拨】本题考查了向量的数量积、转化和数形结合的思想,点到直线的距离,属于中档题.12、【解题分析】
分别求出{}、{}的通项公式,再统一形式即可得解。【题目详解】解:根据题意,又单调递减,{}单调递减增…①…②①+②,得,故代入,有成立,又…③…④③+④,得,故代入,成立。,综上,【题目点拨】本题考查了等比数列性质的灵活运用,考查了分类思想和运算能力,属于难题。13、【解题分析】分析:首先根据等差数列的性质得到,利用分数的性质,将项的比值转化为和的比值,从而求得结果.详解:根据题意有,所以答案是.点睛:该题考查的是有关等差数列的性质的问题,将两个等差数列的项的比值可以转化为其和的比值,结论为,从而求得结果.14、【解题分析】
先将的表示形式求解出来,然后根据范围求出的可取值.【题目详解】因为,所以,又因为,所以,此时或,则可得集合:.【题目点拨】本题考查根据三角函数值求解给定区间中变量的值,难度较易.15、【解题分析】
根据函数经过点求出幂函数的解析式,利用反函数的求法,即可求解.【题目详解】因为点在幂函数的图象上,所以,解得,所以幂函数的解析式为,则,所以原函数的反函数为.故答案为:【题目点拨】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解题分析】2本不同的数学书和1本语文书在书架上随机排成一行,所有的基本事件有(数学1,数学2,语文),(数学1,语文,数学2),(数学2,数学1,语文),(数学2,语文,数学1),(语文,数学1,数学2),(语文,数学2,数学1)共6个,其中2本数学书相邻的有(数学1,数学2,语文),(数学2,数学1,语文),(语文,数学1,数学2),(语文,数学2,数学1)共4个,故2本数学书相邻的概率.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)【解题分析】
(Ⅰ)由底面推出,由菱形的性质推出,即可推出平面从而得到;(Ⅱ)作,交的延长线于,连接,则二面角的平面角是,由已知条件求出AD,进而求出AE、PD,即可求得.【题目详解】(Ⅰ)证明:连接,∵底面,底面,∴.∵四边形是菱形,∴.又∵,平面,平面,∴平面,∴.(Ⅱ)作,交的延长线于,连接.由于,于是平面,平面,,所以二面角的平面角是.设“”,且底面是菱形,,,,∴.【题目点拨】本题考查线面垂直、线线垂直的证明,二面角的余弦值,属于中档题.18、(1);(2).【解题分析】
(1)求向量的模先求向量的平方;(2)由向量的夹角公式可以求得.【题目详解】(1)根据题意可得:故(2),则故.【题目点拨】本题考查向量的数量积运算,求向量的模和夹角,属于基础题.19、答案见解析【解题分析】
利用函数函数的图像变换规律和五点作图法可解.【题目详解】由函数的图像上的每一点保持纵坐标不变,横坐标扩大为原来的2倍,得到函数的图像,
再将函数的图像向左平移个单位,得到函数的图像.
然后再把函数的图像上每一个点的横坐标保持不变,纵坐标扩大为原来的2倍,得到函数的图像.作函数的图像列表得0100函数图像为【题目点拨】本题考查函数的图像变换的过程叙述和作出函数的一个周期的简图,属于基础题.20、(Ⅰ)(Ⅱ)【解题分析】
(Ⅰ)利用二倍角公式化简函数,再逆用两角和的正弦公式进一步化简函数,代入最小正周期公式即可得解;(Ⅱ)由得,则,求解x并写成集合形式.【题目详解】(Ⅰ),所以函数的最小正周期.(Ⅱ)由得,,解得因此方程的解构成的集合是:.【题目点拨】本题考查简单的三角恒等变换,已知三角函数值求角的集合,属于基础题.21、(1);(2)【解题分析】
(1)根据函数奇偶性得到,再由,得;(2),将原式化简得到,进而得到,数列的前项和,,原恒成立问题转化为对恒成立,对n分奇偶得到最值即可.【题目详解】(1)因为为奇函数,,得,又,得.(2)由(1)知,得,又,化简得到:,又,所以,又,故,则数列的前项和;又,则数列的前项和为,对恒成立对恒成立对恒成立,令,则当为奇数时,原不等式对恒成立对恒成立,又函数在上单增,故有;当为偶数时,原不等式对恒成立对恒成立,又函数在上单增,故有.综上得.【题目点拨】这个题目考查了函数的奇偶性的应用以及数列通项公式的求法,数列前
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论