版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市部分重点中学2024届数学高一下期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.右图中,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.2.已知菱形的边长为,则()A. B. C. D.3.若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A. B. C.5 D.64.直线的倾斜角是()A. B. C. D.5.已知函数,则()A.的最小正周期为,最大值为1 B.的最小正周期为,最大值为C.的最小正周期为,最大值为1 D.的最小正周期为,最大值为6.在中,若,则的形状是()A.等边三角形 B.等腰三角形C.直角三角形 D.等腰三角形或直角三角形7.已知,则使得都成立的取值范围是().A. B. C. D.8.已知等差数列的公差,前项和为,则对正整数,下列四个结论中:(1)成等差数列,也可能成等比数列;(2)成等差数列,但不可能成等比数列;(3)可能成等比数列,但不可能成等差数列;(4)不可能成等比数列,也不叫能成等差数列.正确的是()A.(1)(3) B.(1)(4) C.(2)(3) D.(2)(4)9.某几何体的三视图如下图所示(单位:cm)则该几何体的表面积(单位:)是()A. B. C. D.10.已知直线的倾斜角为,且过点,则直线的方程为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知3a=2,则32a=____,log318﹣a=_____12.若则____________13.在中,角为直角,线段上的点满足,若对于给定的是唯一确定的,则_______.14.过抛物线的焦点F的直线交抛物线于A、B两点,则________.15.已知等差数列,若,则______.16.已知内接于抛物线,其中O为原点,若此内接三角形的垂心恰为抛物线的焦点,则的外接圆方程为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=sin22x-π4(1)求当t=1时,求fπ(2)求gt(3)当-12≤t≤1时,要使关于t的方程g(t)=18.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为万元,年维修费用第一年是万元,第二年是万元,第三年是万元,…,以后逐年递增万元汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的和平均摊到每一年的费用叫做年平均费用.设这种汽车使用年的维修费用的和为,年平均费用为.(1)求出函数,的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?19.在平面直角坐标系中,已知,,动点满足条件.(1)求点的轨迹的方程;(2)设点是点关于直线的对称点,问是否存在点同时满足条件:①点在曲线上;②三点共线,若存在,求直线的方程;若不存在,请说明理由.20.为了评估A,B两家快递公司的服务质量,从两家公司的客户中各随机抽取100名客户作为样本,进行服务质量满意度调查,将A,B两公司的调查得分分别绘制成频率分布表和频率分布直方图.规定分以下为对该公司服务质量不满意.分组频数频率0.4合计(Ⅰ)求样本中对B公司的服务质量不满意的客户人数;(Ⅱ)现从样本对A,B两个公司服务质量不满意的客户中,随机抽取2名进行走访,求这两名客户都来自于B公司的概率;(Ⅲ)根据样本数据,试对两个公司的服务质量进行评价,并阐述理由.21.在数列中,,.(1)求证:数列是等差数列;(2)求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
由三视图可知,该几何体为棱长为2的正方体截去一个三棱锥,由正方体的体积减去三棱锥的体积求解.【题目详解】根据三视图,可知原几何体如下图所示,该几何体为棱长为的正方体截去一个三棱锥,则该几何体的体积为.故选:D.【题目点拨】本题考查了几何体三视图的应用问题以及几何体体积的求法,关键是根据三视图还原原来的空间几何体,是中档题.2、D【解题分析】
由菱形可直接得出所求两向量的模长及夹角,直接利用向量数量积公式即可.【题目详解】由菱形的性质可以得出:所以选择D【题目点拨】直接考查向量数量积公式,属于简单题3、C【解题分析】
由已知可得,则,所以的最小值,应选答案C.4、B【解题分析】
先求斜率,即倾斜角的正切值,易得.【题目详解】,可知,即,故选B【题目点拨】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目.5、D【解题分析】
结合二倍角公式,对化简,可求得函数的最小正周期和最大值.【题目详解】由题意,,所以,当时,取得最大值为.由函数的最小正周期为,故的最小正周期为.故选:D.【题目点拨】本题考查三角函数周期性与最值,考查学生的计算求解能力,属于基础题.6、D【解题分析】
,两种情况对应求解.【题目详解】所以或故答案选D【题目点拨】本题考查了诱导公式,漏解是容易发生的错误.7、B【解题分析】
先解出不等式的解集,得到当时,不等式的解集,最后求出它们的交集即可.【题目详解】因为,所以,因为,所以,要想使得都成立,所以取值范围是,故本题选B.【题目点拨】本题考查了一元二次不等式的解法,考查了不等式的性质应用,考查了数学运算能力.8、D【解题分析】试题分析:根据等差数列的性质,,,,因此(1)错误,(2)正确,由上显然有,,,,故(3)错误,(4)正确.即填(2)(4).考点:等差数列的前项和,等差数列与等比数列的定义.9、C【解题分析】
通过三视图的观察可得到该几何体是由一个圆锥加一个圆柱得到的,表面积由一个圆锥的表面积和一个圆柱的侧面积组成【题目详解】圆柱的侧面积为,圆锥的表面积为,其中,,。选C【题目点拨】几何体的表面积一定要看清楚哪些面存在,哪些面不存在10、B【解题分析】
根据倾斜角的正切值为斜率,再根据点斜式写出直线方程,化为一般式即可.【题目详解】因为直线的倾斜角为,故直线斜率.又直线过点,故由点斜式方程可得整理为一般式可得:.故选:B.【题目点拨】本题考查直线方程的求解,涉及点斜式,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、42.【解题分析】
由已知结合指数式的运算性质求解,把化为对数式得到,代入,再由对数的运算性质求解.【题目详解】∵,∴,由,得,∴.故答案为:,.【题目点拨】本题考查指数式与对数式的互化,考查对数的运算性质,属于基础题.12、【解题分析】因为,所以=.故填.13、【解题分析】
设,根据已知先求出x的值,再求的值.【题目详解】设,则.依题意,若对于给定的是唯一的确定的,函数在(1,)是增函数,在(,+)是减函数,所以,此时,.故答案为【题目点拨】本题主要考查对勾函数的图像和性质,考查差角的正切的计算和同角的三角函数的关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.14、【解题分析】
讨论斜率不存在和斜率存在两种情况,分别计算得到答案.【题目详解】抛物线的焦点F为,当斜率不存在时,易知,故;当斜率存在时,设,故,即,故,.综上所述:.故答案为:.【题目点拨】本题考查了抛物线中线段长度问题,意在考查学生的计算能力和转化能力.15、【解题分析】
利用等差数列的通项公式直接求解.【题目详解】设等差数列公差为,由,得,解得.故答案:.【题目点拨】本题考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.16、【解题分析】
由抛物线的对称性知A、B关于x轴对称,设出它们的坐标,利用三角形的垂心的性质,结合斜率之积等于﹣1即可求得直线MN的方程,即可求出点C的坐标,问题得以解决.【题目详解】∵抛物线关于x轴对称,内接三角形的垂心恰为抛物线的焦点,三边上的高过焦点,∴另两个顶点A,B关于x轴对称,即△ABO是等腰三角形,作AO的中垂线MN,交x轴与C点,而Ox是AB的中垂线,故C点即为△ABO的外接圆的圆心,OC是外接圆的半径,设A(x1,2),B(x1,﹣2),连接BF,则BF⊥AO,∵kBF,kAO,∴kBF•kAO=•1,整理,得x1(x1﹣5)=1,则x1=5,(x1=1不合题意,舍去),∵AO的中点为(,),且MN∥BF,∴直线MN的方程为y(x),当x1=5代入得2x+4y﹣91,∵C是MN与x轴的交点,∴C(,1),而△ABO的外接圆的半径OC,于是得到三角形外接圆方程为(x)2+y2=()2,△OAB的外接圆方程为:x2﹣9x+y2=1,故答案为x2﹣9x+y2=1.【题目点拨】本题考查抛物线的简单性质,考查了两直线垂直与斜率的关系,是中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-4(2)g(t)=t2【解题分析】
(1)直接代入计算得解;(2)先求出sin(2x-π4)∈[-12,1]【题目详解】(1)当t=1时,f(x)=sin22x-(2)因为x∈[π24,πf(x)=[sin(2x-当t<-12时,则当sin当-12≤t≤1时,则当当t>1时,则当sin(2x-π故g(t)=(3)当-12≤t≤1时,g(t)=-6t+1,令欲使g(t)=kt2-9有一个实根,则只需h(-解得k≤-2或所以k的范围:(-【题目点拨】本题主要考查三角函数的范围的计算,考查二次函数的最值的求法和方程的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.18、(1),;(2)时,年平均费用最小,最小值为3万元.【解题分析】试题分析:根据题意可知,汽车使用年的维修费用的和为,而第一年的维修费用是万元,以后逐年递增万元,每一年的维修费用形成以为首项,为公差的等差数列,根据等差数列的前项和即可求出的解析式;将购车费、每年使用的保险费、养路费、汽油费以及维修费用之和除以即可得到年平均费用,根据基本不等式即可求出平均费用的最小值.试题解析:(1)根据题意可知,汽车使用年的维修费用的和为,而第一年的维修费用是万元,以后逐年递增万元,每一年的维修费用形成以为首项,为公差的等差数列,根据等差数列的前项和公式可得:因为购车费、每年使用的保险费、养路费、汽油费以及维修费用之和为,所以年平均费用为;(2)因为所以当且仅当即时,年平均费用最小,最小值为3万元.考点:本题考查了等差数列的前项和公式以的掌握,以及基本不等式的应用,同时考查了学生解决实际应用题的能力.19、(1);(2)存在点,直线方程为.【解题分析】
(1)设,由题意根据两点间的距离公式即可求解.(2)假设存在点满足题意,此时直线的方程为:.设,,根据题意可得,求出,再将直线与圆联立求出,根据向量共线的坐标表示以及点在圆上,求出即可求解.【题目详解】(1)设,由得,整理得:,所以点的轨迹方程为.(2)假设存在点满足题意,此时直线的方程为:.设,.因为与关于直线对称,所以解得即.由,得,即.此时,,,所以,所以当时,三点共线.若在曲线上,则,整理得,即,所以,即.综上所述,存在点,满足条件①②,此时直线方程为.【题目点拨】本小题主要考查坐标法、圆的标准方程、直线与圆的位置关系等基础知识,考查抽象概括能力、运算求解能力,考查数形结合思想、整体运算思想,化归与转化思想等.20、(Ⅰ)3人;(Ⅱ)0.3;(Ⅲ)见解析【解题分析】
(Ⅰ)对B公司的服务质量不满意的频率为,即概率为0.03,易求解.(Ⅱ)共有5名客服不满意,将每种情况都列出来即可算出全来自于B公司的概率.(Ⅲ)可通过频率对比,服务质量得分的众数,服务质量得70分(或80分)以上的频率几个方面进行对比.【题目详解】(Ⅰ)样本中对B公司的服务质量不满意的频率为,所以样本中对B公司的服务质量不满意的客户有人.(Ⅱ)设“这两名客户都来自于B公司”为事件M.对A公司的服务质量不满意的客户有2人,分别记为,;对B公司的服务质量不满意的客户有3人,分别记为,,.现从这5名客户中随机抽取2名客户,不同的抽取的方法有,,,,,,,,,共10个;其中都来自于B公司的抽取方法有,,共3个,所以.所以这两名客户都来自于B公司的概率为.(Ⅲ)答案一:由样本数据可以估计客户对A公司的服务质量不满意的频率比对B公司服务质量不满意的频率小,由此推断A公司的服务质量比B公司的服务质量好.答案二:由样本数据可以估计A公司的服务质量得分的众数与B公司服务质量得分的众数相同,由此推断A公司的服务质量与B公司的服务质量相同.答案三:由样本数据可以估计A公司的服务质量得70分(或80分)以上的频率比B公司得70分(或80分)以上的频率小,由此推断A公司的服务质量比B公司的服务质量差.答案四:由样本数据可以估计A公司的服务质量得分的平均分比B公司服务质量得分的平均分低,由此推断A公司的服务质量比B公司的服务质量差.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林艺术学院《素描造型人体训练》2021-2022学年第一学期期末试卷
- 吉林艺术学院《短片写作》2021-2022学年第一学期期末试卷
- 中药材基地管理协议书范文
- 2024年大学党建共建协议书模板
- 2024年大人签离婚协议书模板
- 2024年大件物标书购买合同范本
- 奶茶店撤股协议书范文模板
- 2022年公务员多省联考《申论》真题(四川县乡卷)及答案解析
- 吉林师范大学《历史学科课程与教学论》2021-2022学年第一学期期末试卷
- 吉林师范大学《行书理论与技法III》2021-2022学年第一学期期末试卷
- 《2024版CSCO胰腺癌诊疗指南》更新要点 2
- +陕西省渭南市富平县2023-2024学年九年级上学期摸底数学试卷
- 2023年法律职业资格《客观题卷一》真题及答案
- 公司培训工作报告6篇
- 2024中国民航机场建设集团限公司校园招聘304人高频考题难、易错点模拟试题(共500题)附带答案详解
- 鱼苗繁育中的亲鱼选择与培育考核试卷
- 血液透析患者安全管理应急预案及处理课件
- 音乐治疗服务行业发展趋势及前景展望分析报告
- 摊位入股合同范本
- 外圆内方外方内圆公开课获奖课件
- 2024年人教版八年级地理上册全册基础知识点复习提纲
评论
0/150
提交评论