




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省宁乡市数学高一第二学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线上的点到圆上点的最近距离为()A. B. C. D.12.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均值也相等,则和的值分别为A.5,5 B.3,5 C.3,7 D.5,73.设,则A.-1 B.1 C.ln2 D.-ln24.直线的倾斜角为()A. B. C. D.5.某程序框图如图所示,该程序运行后输出的值是()A. B. C. D.6.已知角满足,,且,,则的值为()A. B. C. D.7.若直线上存在点满足则实数的最大值为A. B. C. D.8.把一块长是10,宽是8,高是6的长方形木料削成一个体积最大的球,这个球的体积等于()A. B.480 C. D.9.下列结论正确的是()A.若则; B.若,则C.若,则 D.若,则;10.展开式中的常数项为()A.1 B.21 C.31 D.51二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列的首项为,公比为,其前项和为,下列命题中正确的是______.(写出全部正确命题的序号)(1)等比数列单调递增的充要条件是,且;(2)数列:,,,……,也是等比数列;(3);(4)点在函数(,为常数,且,)的图像上.12.在数列中,,是其前项和,当时,恒有、、成等比数列,则________.13.已知圆锥的高为,体积为,用平行于圆锥底面的平面截圆锥,得到的圆台体积是,则该圆台的高为_______.14.圆台两底面半径分别为2cm和5cm,母线长为cm,则它的轴截面的面积是________cm2.15.某货船在处看灯塔在北偏东方向,它以每小时18海里的速度向正北方向航行,经过40分钟到达处,看到灯塔在北偏东方向,此时货船到灯塔的距离为______海里.16.已知正实数a,b满足2a+b=1,则1a三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量与向量的夹角为,且,.(1)求;(2)若,求.18.已知函数,,且是R上的奇函数,(1)求实数a的值;(2)判断函数)的单调性(不必说明理由),并求不等式的解集;(3)若不等式对任意的恒成立,求实数b的取值范围.19.已知圆内有一点,过点作直线交圆于两点.(1)当直线经过圆心时,求直线的方程;(2)当弦被点平分时,写出直线的方程.20.为了了解居民的用电情况,某地供电局抽查了该市若干户居民月均用电量(单位:),并将样本数据分组为,,,,,,,其频率分布直方图如图所示.(1)若样本中月均用电量在的居民有户,求样本容量;(2)求月均用电量的中位数;(3)在月均用电量为,,,的四组居民中,用分层随机抽样法抽取户居民,则月均用电量在的居民应抽取多少户?21.设的内角为所对的边分别为,且.(1)求角的大小;(2)若,求的周长的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
求出圆心和半径,求圆心到直线的距离,此距离减去半径即得所求的结果.【题目详解】将圆化为标准形式可得可得圆心为,半径,而圆心到直线距离为,
因此圆上点到直线的最短距离为,故选:C.【题目点拨】本题考查直线和圆的位置关系,点到直线的距离公式的应用,求圆心到直线的距离是解题的关键,属于中档题.2、B【解题分析】
利用茎叶图、中位数、平均数的性质直接求解.【题目详解】由茎叶图得:∵甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,∴65=60+y,解得y=5,∵平均值也相等,∴,解得x=1.故选B.【题目点拨】本题考查实数值的求法,考查茎叶图、中位数、平均数的性质等基础知识,考查运算求解能力,是基础题.3、C【解题分析】
先把化为,再根据公式和求解.【题目详解】故选C.【题目点拨】本题考查对数、指数的运算,注意观察题目之间的联系.4、D【解题分析】
求出斜率,根据斜率与倾斜角关系,即可求解.【题目详解】化为,直线的斜率为,倾斜角为.故选:D.【题目点拨】本题考查直线方程一般式化为斜截式,求直线的斜率、倾斜角,属于基础题.5、B【解题分析】
模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案.【题目详解】模拟程序运行过程如下:0),判断为否,进入循环结构,1),判断为否,进入循环结构,2),判断为否,进入循环结构,3),判断为否,进入循环结构,……9),判断为否,进入循环结构,10),判断为是,故输出,故选:B.【题目点拨】本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.6、D【解题分析】
根据角度范围先计算和,再通过展开得到答案.【题目详解】,,故答案选D【题目点拨】本题考查了三角函数恒等变换,将是解题的关键.7、B【解题分析】
首先画出可行域,然后结合交点坐标平移直线即可确定实数m的最大值.【题目详解】不等式组表示的平面区域如下图所示,由,得:,即C点坐标为(-1,-2),平移直线x=m,移到C点或C点的左边时,直线上存在点在平面区域内,所以,m≤-1,即实数的最大值为-1.【题目点拨】本题主要考查线性规划及其应用,属于中等题.8、A【解题分析】
由题意知,此球是棱长为6的正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为6,再由球的体积公式求解即可.【题目详解】解:由已知可得球的直径为6,故半径为3,其体积是,故选:.【题目点拨】本题考查长方体内切球的几何特征,以及球的体积公式,属于基础题.9、D【解题分析】
根据不等式的性质,结合选项,进行逐一判断即可.【题目详解】因,则当时,;当时,,故A错误;因,则或,故B错误;因,才有,条件不足,故C错误;因,则,则只能是,故D正确.故选:D.【题目点拨】本题考查不等式的基本性质,需要对不等式的性质非常熟练,属基础题.10、D【解题分析】常数项有三种情况,都是次,或者都是次,或者都是二次,故常数项为二、填空题:本大题共6小题,每小题5分,共30分。11、(3)【解题分析】
根据递增数列的概念,以及等比数列的通项公式,充分条件与必要条件的概念,可判断(1);令,为偶数,可判断(2);根据等比数列的性质,直接计算,可判断(3);令,结合题意,可判断(4),进而可得出结果.【题目详解】(1)若等比数列单调递增,则,所以或,故且不是等比数列单调递增的充要条件;(1)错;(2)若,为偶数,则,,因等比数列中的项不为,故此时数列,,,……,不成等比数列;(2)错;(3),所以(3)正确;(4)若,则,若点在函数的图像上,则,因,,故不能对任意恒成立;故(4)错.故答案为:(3)【题目点拨】本题主要考命题真假的判定,熟记等比数列的性质,以及等比数列的通项公式与求和公式即可,属于常考题型.12、.【解题分析】
由题意得出,当时,由,代入,化简得出,利用倒数法求出的通项公式,从而得出的表达式,于是可求出的值.【题目详解】当时,由题意可得,即,化简得,得,两边取倒数得,,所以,数列是以为首项,以为公差的等差数列,,,则,因此,,故答案为:.【题目点拨】本题考查数列极限的计算,同时也考查了数列通项的求解,在含的数列递推式中,若作差法不能求通项时,可利用转化为的递推公式求通项,考查分析问题和解决问题的能力,综合性较强,属于中等题.13、【解题分析】设该圆台的高为,由题意,得用平行于圆锥底面的平面截圆锥,得到的小圆锥体积是,则,解得,即该圆台的高为3.点睛:本题考查圆锥的结构特征;在处理圆锥的结构特征时可记住常见结论,如本题中用平行于圆锥底面的平面截圆锥,截面与底面的面积之比是两个圆锥高的比值的平方,所得两个圆锥的体积之比是两个圆锥高的比值的立方.14、63【解题分析】
首先画出轴截面,然后结合圆台的性质和轴截面整理计算即可求得最终结果.【题目详解】画出轴截面,如图,过A作AM⊥BC于M,则BM=5-2=3(cm),AM==9(cm),所以S四边形ABCD==63(cm2).【题目点拨】本题主要考查圆台的空间结构特征及相关元素的计算等知识,意在考查学生的转化能力和计算求解能力.15、【解题分析】
由题意利用方位角的定义画出示意图,再利用三角形,解出的长度.【题目详解】解:由题意画出图形为:因为,,所以,又由于某船以每小时18海里的速度向正北方向航行,经过40分钟航行到,所以(海里).在中,利用正弦定理得:,所以;故答案为:.【题目点拨】此题考查了学生对于题意的正确理解,还考查了利用正弦定理求解三角形及学生的计算能力,属于基础题.16、9【解题分析】
利用“乘1法”和基本不等式即可得出.【题目详解】解:∵正实数a,b满足2a+b=1,∴1a+12b=(2a+b∴1a+故答案为:9【题目点拨】本题考查了“乘1法”和基本不等式的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)对等式两边同时平方,利用平面向量数量积的定义以及数量积的运算性质,可以求出;(2)根据两个非零向量互相垂直等价于它们的数量积为零,可以得到方程,解方程可以求出的值.【题目详解】解:(1)由得,那么;解得或(舍去)∴;(2)由得,那么因此∴.【题目点拨】本题考查了求平面向量模的问题,考查了两个非零平面向量互相垂直的性质,考查了平面向量数量积的定义及运算性质,考查了数学运算性质.18、(1)0(2),(3)【解题分析】
(1)根据奇函数的性质可得.,由此求得值(2)函数在上单调递增,根据单调性不等式即可(3)不等式..分离参数即可.【题目详解】(1),是上的奇函数..即得:.即,得:.,.(2)由(1)得.函数在上单调递增,由不等式得不等式.所以,解得不等式的解集为,.(3)由不等式在上恒成立,可得,即.当时,,当,时,.令,.故实数b的取值范围.【题目点拨】本题主要考查指数型复合函数的性质以及应用,函数的奇偶性的应用,以及函数的恒成立问题,属于中档题.19、(1)(2)【解题分析】
(1)求得圆的圆心为,利用直线的点斜式方程,即可求解;(2)当弦被点平分时,,得此直线的斜率为,结合直线的点斜式方程,即可求解.【题目详解】(1)由题意得,圆的圆心为,因为直线过点,所以直线的斜率为2,直线的方程为,即直线的方程.(2)当弦被点平分时,,此时直线的斜率为,所以直线的方程为,即直线的方程.【题目点拨】本题主要考查了直线的方程的求解,以及圆的性质的应用,其中解答中熟练应用直线与圆的位置关系和直线的点斜式方程是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1)200(2)224(3)4户【解题分析】
(1)因为,所以月均用电量在的频率为,即可求得答案;(2)因为,设中位数为,,即可求得答案;(3)月均用电量为,,,的频率分别为,即可求得答案.【题目详解】(1),得.月均用电量在的频率为.设样本容量为N,则,.(2),月均用电量的中位数在内.设中位数为,,解得,即中位数为.(3)月均用电量为,,,的频率分别为应从月均用电量在的用户中抽取(户)【题目点拨】本题考查了用样本估计总体的相关计算,解题关键是掌握分层抽样的计算方法和样本容量,中位数定义,考查了分析能力和计算能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北黄冈应急管理职业技术学院《国际商务策划》2023-2024学年第二学期期末试卷
- Unit 5 Topic 2 Section C 教学设计 2024-2025学年仁爱科普版八年级英语下册
- 比例的认识(教学设计)-2023-2024学年六年级下册数学北师大版
- 庆阳职业技术学院《工业通风与除尘》2023-2024学年第二学期期末试卷
- 宣化科技职业学院《建筑风景速写》2023-2024学年第二学期期末试卷
- 辽宁现代服务职业技术学院《食品生物化学(实验)》2023-2024学年第二学期期末试卷
- 济南2024年山东济南市章丘区社区工作者招考10人笔试历年参考题库附带答案详解
- 信阳师范大学《语文课堂教学技能》2023-2024学年第二学期期末试卷
- 济南护理职业学院《中西医结合实验诊断研究》2023-2024学年第二学期期末试卷
- 河南质量工程职业学院《结构化学C》2023-2024学年第二学期期末试卷
- 数字化战略转型-深度研究
- 【上海】第一次月考卷01【20~21章】
- 2025年东营科技职业学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 2025年企业中高层安全第一课:安全责任意识强化专题培训
- 英语-九师联盟2025届高三年级上学期1月质量检测试题和答案
- 流行性感冒诊疗方案(2025年版)
- 2024CSCO免疫检查点抑制剂相关的毒性管理指南
- 《影像增强检查外周静脉通路三级评价模式应用规范》编制说明
- 2025年社区计生工作计划(三篇)
- 2025江西上饶经济技术开发区招商集团限公司招聘29人高频重点提升(共500题)附带答案详解
- 石油行业海洋石油勘探与开发方案
评论
0/150
提交评论