版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省吉林市蛟河市第一中学2024届高一数学第二学期期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则函数的单调递增区间为()A. B. C. D.2.已知直线l的方程是y=2x+3,则l关于y=-x对称的直线方程是()A.x-2y+3=0 B.x-2y=0C.x-2y-3=0 D.2x-y=03.若关于x,y的方程组无解,则()A. B. C.2 D.4.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.1205.已知为第Ⅱ象限角,则的值为()A. B. C. D.6.如图,两个正方形和所在平面互相垂直,设、分别是和的中点,那么:①;②平面;③;④、异面.其中不正确的序号是()A.① B.② C.③ D.④7.已知基本单位向量,,则的值为()A.1 B.5 C.7 D.258.设是周期为4的奇函数,当时,,则()A. B. C. D.9.在直角中,,线段上有一点,线段上有一点,且,若,则()A.1 B. C. D.10.函数的对称中心是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正方体的棱长为,点、分别为、的中点,则点到平面的距离为______.12._____13.设向量与向量共线,则实数等于__________.14.已知向量a=(2,-4),b=(-3,-4),则向量a与15.某小区拟对如图一直角△ABC区域进行改造,在三角形各边上选一点连成等边三角形,在其内建造文化景观.已知,则面积最小值为____16.已知,且,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面向量,.(1)若与垂直,求;(2)若,求.18.已知,(1)求;(2)若,求.19.已知{an}是等差数列,设数列{bn}的前n项和为Sn,且2bn=b1(1+Sn),bn≠0,又a2b2=4,a7+b3=1.(1)求{an}和{bn}的通项公式;(2)令cn=anbn(n∈N*),求{cn}的前n项和Tn20.如图,在△ABC中,cosC=,角B的平分线BD交AC于点D,设∠CBD=θ,其中tanθ=﹣1.(1)求sinA的值;(2)若,求AB的长.21.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
由题意利用两角和的余弦公式化简函数的解析式,再利用余弦函数的单调性,得出结论.【题目详解】函数,令,求得,可得函数的增区间为,,.再根据,,可得增区间为,,故选.【题目点拨】本题主要考查两角和的余弦公式的应用,考查余弦函数的单调性,属于基础题.2、A【解题分析】将x=-y,y=-x代入方程y=2x+3中,得所求对称的直线方程为-x=-2y+3,即x-2y+3=0.3、A【解题分析】
由题可知直线与平行,再根据平行公式求解即可.【题目详解】由题,直线与平行,故.故选:A【题目点拨】本题主要考查了二元一次方程组与直线间的位置关系,属于基础题.4、B【解题分析】试题分析:根据频率分布直方图,得;该模块测试成绩不少于60分的频率是1-(0.005+0.015)×10=0.8,∴对应的学生人数是600×0.8=480考点:频率分布直方图5、B【解题分析】
首先由,解出,求出,再利用二倍角公式以及所在位置,即可求出.【题目详解】因为,所以或,又为第Ⅱ象限角,故,.因为为第Ⅱ象限角即,所以,,即为第Ⅰ,Ⅲ象限角.由于,解得,故选B.【题目点拨】本题主要考查二倍角公式的应用以及象限角的集合应用.6、D【解题分析】
取的中点,连接,,连接,,由线面垂直的判定和性质可判断①;由三角形的中位线定理,以及线面平行的判定定理可判断②③④.【题目详解】解:取的中点,连接,,连接,,正方形和所在平面互相垂直,、分别是和的中点,可得,,平面,可得,故①正确;由为的中位线,可得,且平面,可得平面,故②③正确,④错误.故选:D.【题目点拨】本题主要考查空间线线和线面的位置关系,考查转化思想和数形结合思想,属于基础题.7、B【解题分析】
计算出向量的坐标,再利用向量的求模公式计算出的值.【题目详解】由题意可得,因此,,故选B.【题目点拨】本题考查向量模的计算,解题的关键就是求出向量的坐标,并利用坐标求出向量的模,考查运算求解能力,属于基础题.8、A【解题分析】
.故选A.9、D【解题分析】
依照题意采用解析法,建系求出目标向量坐标,用数量积的坐标表示即可求出结果.【题目详解】如图,以A为原点,AC,AB所在直线分别为轴建系,依题设A(0,0),B(0,2),C(3,0),M(1,0),,由得,,解得,,所以,,,故选D.【题目点拨】本题主要考查解析法在向量中的应用,意在考查学生数形结合的能力.10、C【解题分析】,设是奇函数,其图象关于原点对称,而函数的图象可由的图象向右平移一个单位,向下平移两个单位得到,所以函数的图象关于点对称,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
作出图形,取的中点,连接,证明平面,可知点平面的距离等于点到平面的距离,然后利用等体积法计算出点到平面的距离,即为所求.【题目详解】如下图所示,取的中点,连接,在正方体中,且,、分别为、的中点,且,所以,四边形为平行四边形,且,又,,平面,平面,平面,则点平面的距离等于点到平面的距离,的面积为,在正方体中,平面,且平面,,易知三棱锥的体积为.的面积为.设点到平面的距离为,则,.故答案为:.【题目点拨】本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意等体积法的合理运用.12、【解题分析】
将写成,切化弦后,利用两角和差余弦公式可将原式化为,利用二倍角公式可变为,由可化简求得结果.【题目详解】本题正确结果:【题目点拨】本题考查利用三角恒等变换公式进行化简求值的问题,涉及到两角和差余弦公式、二倍角公式的应用.13、3【解题分析】
利用向量共线的坐标公式,列式求解.【题目详解】因为向量与向量共线,所以,故答案为:3.【题目点拨】本题考查向量共线的坐标公式,属于基础题.14、5【解题分析】
先求出a⋅b,再求【题目详解】由题得a所以向量a与b夹角的余弦值为cosα=故答案为5【题目点拨】(1)本题主要考查向量的夹角的计算,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)求两个向量的夹角一般有两种方法,方法一:cos<a,b>=a·bab,方法二:设a=(x1,y15、【解题分析】
设,然后分别表示,利用正弦定理建立等式用表示,从而利用三角函数的性质得到的最小值,从而得到面积的最小值.【题目详解】因为,所以,显然,,设,则,且,则,所以,在中,由正弦定理可得:,求得,其中,则,因为,所以当时,取得最大值1,则的最小值为,所以面积最小值为,【题目点拨】本题主要考查了利用三角函数求解实际问题的最值,涉及到正弦定理的应用,属于难题.对于这类型题,关键是能够选取恰当的参数表示需求的量,从而建立相关的函数,利用函数的性质求解最值.16、或【解题分析】
利用正切函数的单调性及周期性,可知在区间与区间内各有一值,从而求出。【题目详解】因为函数的周期为,而且在内单调增,所以有两个解,一个在,一个在,由反正切函数的定义有,或。【题目点拨】本题主要考查正切函数的性质及反正切函数的定义的应用。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)根据垂直数量积为0求解即可.(2)根据平行的公式求解,再计算即可.【题目详解】解:(1)由已知得,,解得或.因为,所以.(2)若,则,所以或.因为,所以.所以,所以.【题目点拨】本题主要考查了向量垂直与平行的运用以及模长的计算,属于基础题型.18、(1)(2)【解题分析】
(1)两边平方可得,根据同角公式可得,;(2)根据两角和的正切公式,计算可得结果.【题目详解】(1)因为,所以,即.因为,所以,所以,故.(2)因为,所以,所以.【题目点拨】本题考查了两角同角公式,二倍角正弦公式,两角和的正切公式,属于基础题.19、(2)an=n;bn=2n﹣2(2)Tn=(n﹣2)•2n+2【解题分析】
(2)运用数列的递推式,以及等比数列的通项公式可得bn,{an}是公差为的等差数列,运用等差数列的通项公式可得首项和公差,可得所求通项公式;
(2)求得,由数列的错位相减法求和,结合等比数列的求和公式,即可得到所求和.【题目详解】(2)2bn=b2(2+Sn),bn≠0,n=2时,2b2=b2(2+S2)=b2(2+b2),解得b2=2,n≥2时,2bn﹣2=2+Sn﹣2,且2bn=2+Sn,相减可得2bn﹣2bn﹣2=Sn﹣Sn﹣2=bn,即bn=2bn﹣2,可得bn=2n﹣2,设{an}是公差为d的等差数列,a2b2=4,a7+b3=2即为a2+d=2,a2+6d=7,解得a2=d=2,可得an=n;(2)cn=anbn=n•2n﹣2,前n项和,,两式相减可得﹣Tn=2+2+4+…+2n﹣2﹣n2nn2n,化简可得Tn=(n﹣2)2n+2.【题目点拨】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的递推式和数列的错位相减法求和,化简运算能力,属于中档题.20、(1)(2)【解题分析】
(1)根据二倍角公式及同角基本关系式,求出cos∠ABC,进而可求出sinA;(2)根据正弦定理求出AC,BC的关系,利用向量的数量积公式求出AC,可得BC,正弦定理可得答案.【题目详解】(1)由∠CBD=θ,且tanθ1,所以θ∈(0,),所以cos∠ABC,则sin∠ABC,由cosC,得:sinC,sinA=sin[π﹣(∠ABC+∠C)]=sin(∠ABC+∠C).(2)由正弦定理,得,即BCAC;又•AC2•
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年太阳能光伏发电项目合作开发合同
- 2024年大中专毕业生兼职合同
- 市政工程施工质量保障方案
- 城市垃圾处理卸料平台方案
- 2024年仓储物流租赁协议(含运营权)
- 食品加工机械相关行业投资方案
- 水泥土挤密桩在抗震设计中的方案
- 2024年加工承揽合同详细条款与标的解读
- 煤矿环境保护措施实施方案
- 2024年度河北省高校教师资格证之高等教育学真题练习试卷B卷附答案
- 桥湾750kV变电站工程330kV构支架安装技术措施(1)
- 电动机的维护与保养毕业论文
- 部编版二年级上册道德与法治第二单元 我们的班级 达标测试卷及答案28
- 模拟真实天平(flash模拟型课件)
- 山东生态功能区划(文字)
- DFMEA模板(完整版)
- 发电机组达标投产自查报告
- 2021年贵州高考理综试题含答案
- 《财务管理学》知识点归纳(精华)
- 管道缩写代号.xlsx
- 英格索兰空压机服务协议
评论
0/150
提交评论