2024届山东省临沂市临沭县一中数学高一第二学期期末联考模拟试题含解析_第1页
2024届山东省临沂市临沭县一中数学高一第二学期期末联考模拟试题含解析_第2页
2024届山东省临沂市临沭县一中数学高一第二学期期末联考模拟试题含解析_第3页
2024届山东省临沂市临沭县一中数学高一第二学期期末联考模拟试题含解析_第4页
2024届山东省临沂市临沭县一中数学高一第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省临沂市临沭县一中数学高一第二学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△ABC中,,则△ABC为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰三角形或直角三角形2.设为等差数列的前n项和,若,则使成立的最小正整数n为()A.6 B.7 C.8 D.93.三棱锥中,底面是边长为2的正三角形,⊥底面,且,则此三棱锥外接球的半径为()A. B. C. D.4.已知数列的前项和为,且,若,,则的值为()A.15 B.16 C.17 D.185.已知函数是定义在上的偶函数,且在区间上单调递增.若实数满足,则的最大值是()A.1 B. C. D.6.函数的定义域是()A. B.C. D.7.已知均为实数,则“”是“构成等比数列”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件8.为了得到函数y=sin(2x+)的图象,只需将函数y=sin2x图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度9.在中,若,则()A. B. C. D.10.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.倍 B.2倍 C.倍 D.倍二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列an中,a3=2,a12.数列an满足12a113.如图是一个算法流程图.若输出的值为4,则输入的值为______________.14.函数的单调递减区间是______.15.已知数列为等差数列,,,若,则________.16.若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆M的圆心在直线上,直线与圆M相切于点.(1)求圆M的标准方程;(2)已知过点且斜率为的直线l与圆M交于不同的两点A、B,而且满足,求直线l的方程.18.已知向量,,且(1)求·及;(2)若,求的最小值19.直线经过点,且与圆相交与两点,截得的弦长为,求的方程.20.某种笔记本的单价是5元,买个笔记本需要y元,试用函数的三种表示法表示函数.21.已知数列满足:.(1)若为等差数列,求的通项公式;(2)若单调递增,求的取值范围;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

直接利用正弦定理余弦定理化简得到,即得解.【题目详解】由已知得,由正、余弦定理得,即,即,故是直角三角形.故答案为:C【题目点拨】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的掌握水平和分析推理水平.2、C【解题分析】

利用等差数列下标和的性质可确定,,,由此可确定最小正整数.【题目详解】且,使得成立的最小正整数故选:【题目点拨】本题考查等差数列性质的应用问题,关键是能够熟练应用等差数列下标和性质化简前项和公式.3、D【解题分析】

过的中心M作直线,则上任意点到的距离相等,过线段中点作平面,则面上的点到的距离相等,平面与的交点即为球心O,半径,故选D.考点:求解三棱锥外接球问题.点评:此题的关键是找到球心的位置(球心到4个顶点距离相等).4、B【解题分析】

推导出数列是等差数列,由解得,由此利用能求出的值.【题目详解】数列的前项和为,且数列是等差数列解得解得故选:【题目点拨】本题考查等差数列的判定和基本量的求解,属于基础题.5、D【解题分析】由图象性质可知,,解得,故选D。6、A【解题分析】

利用复合函数求定义域的方法求出函数的定义域.【题目详解】令x+(k∈Z),解得:x(k∈Z),故函数的定义域为{x|x,k∈Z}故选A.【题目点拨】本题考查的知识要点:正切函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.7、A【解题分析】解析:若构成等比数列,则,即是必要条件;但时,不一定有成等比数列,如,即是不充分条件.应选答案A.8、A【解题分析】

由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【题目详解】∵,故要得到的图象,只需将函数y=sin2x,x∈R的图象向左平移个单位长度即可,故选:A.【题目点拨】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.9、A【解题分析】

由已知利用余弦定理即可解得的值.【题目详解】解:,,,由余弦定理可得:,解得:,故选:A.【题目点拨】本题主要考查余弦定理在解三角形中的应用,属于基础题.10、C【解题分析】

以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可.【题目详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三家性的高变为原来的sin45°=,故直观图中三角形面积是原三角形面积的.故选C.【题目点拨】本题重点考查了斜二侧画法、平面图形的面积的求解方法等知识,属于中档题.解题关键是准确理解斜二侧画法的内涵,与x轴平行的线段长度保持不变,与y轴平行的线段的长度减少为原来的一半.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解题分析】

先计算a5【题目详解】aaa故答案为4【题目点拨】本题考查了等比数列的计算,意在考查学生的计算能力.12、14,n=1【解题分析】

试题分析:这类问题类似于Sn=f(an)的问题处理方法,在12a1+122a2+...+1.考点:数列的通项公式.13、-1【解题分析】

对的范围分类,利用流程图列方程即可得解.【题目详解】当时,由流程图得:令,解得:,满足题意.当时,由流程图得:令,解得:,不满足题意.故输入的值为:【题目点拨】本题主要考查了流程图知识,考查分类思想及方程思想,属于基础题.14、【解题分析】

求出函数的定义域,结合复合函数求单调性的方法求解即可.【题目详解】由,解得令,则函数在区间上单调递减,在区间上单调递增函数在定义域内单调递增函数的单调递减区间是故答案为:【题目点拨】本题主要考查了复合函数的单调性,属于中档题.15、【解题分析】

设等差数列的公差为,根据已知条件列方程组解出和的值,可求出的表达式,再由可解出的值.【题目详解】设等差数列的公差为,由,得,解得,,,因此,,故答案为:.【题目点拨】本题考查等差数列的求和,对于等差数列的问题,通常建立关于首项和公差的方程组求解,考查方程思想,属于中等题.16、【解题分析】

先求,再代入求值得解.【题目详解】由题得所以.故答案为【题目点拨】本题主要考查共轭复数和复数的模的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解题分析】

(1)设圆心坐标为,由圆的性质可得,再求解即可;(2)设,,则等价于,再利用韦达定理求解即可.【题目详解】解:(1)由圆M的圆心在直线上,设圆心坐标为,又直线与圆M相切于点,则,解得:,即圆心坐标,半径,即圆M的标准方程为;(2)由题意可得直线l的方程为,联立,消整理可得,则,即,又,则恒成立,设,,则由题意有,则,,又,则,则,即,整理得,解得或,即直线l的方程为或,即或.【题目点拨】本题考查了圆的标准方程的求法,重点考查了直线与圆的位置关系,属中档题.18、(1)见解析;(2).【解题分析】

(1)运用向量数量积的坐标表示,求出·;运用平面向量的坐标运算公式求出,然后求出模.(2)根据上(1)求出函数的解析式,配方,利用二次函数的性质求出最小值.【题目详解】(1)∵∴∴(2)∵∴∴【题目点拨】本题考查了平面向量数量积的坐标表示,以及平面向量的坐标加法运算公式.重点是二次函数求最小值问题.19、或【解题分析】

直线截圆得的弦长为,结合圆的半径为5,利用勾股定理可得圆心到直线的距离,再利用点到直线的距离公式列方程求出直线斜率,由点斜式可得结果.【题目详解】设直线的方程为,即,因为圆的半径为5,截得的弦长为所以圆心到直线的距离,即或,∴所求直线的方程为或.【题目点拨】本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.20、见解析.【解题分析】

根据定义域,分别利用解析法,列表法,图像法表示即可.【题目详解】解:这个函数的定义域是数集.用解析法可将函数表示为,.用列表法可将函数表示为笔记本数12345钱数510152025用图象法可将函数表示为:【题目点拨】本题考查函数的表示方法,注意函数的定义域,是基础题.21、(1)(2)【解题分析】

(1)设出的通项公式,根据计算出对应的首项和公差,即可求解出通项公式;(2)根据条件得到,得到的奇数项成等差数列,的偶数项也成等差数列,根据单调递增列出关于的不等式,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论