版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市普通中学三校联考数学高一下期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列命题中正确的是()A.如果两条直线都平行于同一个平面,那么这两条直线互相平行B.过一条直线有且只有一个平面与已知平面垂直C.如果一条直线平行于一个平面内的一条直线,那么这条直线平行于这个平面D.如果两条直线都垂直于同一平面,那么这两条直线共面2.是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角3.已知数列,满足,若,则()A. B. C. D.4.已知点,则向量在方向上的投影为()A. B. C. D.5.已知向量,,若,则的值为()A. B.1 C. D.6.执行如图所示的程序框图,则输出的的值为()A.3 B.4 C.5 D.67.如图为A、B两名运动员五次比赛成绩的茎叶图,则他们的平均成绩和方差的关系是()A., B.,C., D.,8.已知是非零向量,若,且,则与的夹角为()A. B. C. D.9.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为,第2小组的频数为12,则抽取的学生总人数是()A.24 B.48 C.56 D.6410.设是两条不同的直线,是两个不同的平面,则下列命题中正确的是()A.若,则B.若,则C.若,则D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.等差数列中,则此数列的前项和_________.12.已知等差数列,的前项和分别为,,若,则______.13.在数列an中,a1=2,a14.若在等比数列中,,则__________.15.在中,角的对边分别为,且面积为,则面积的最大值为_____.16.甲、乙两人要到某地参加活动,他们都随机从火车、汽车、飞机三种交通工具中选择一种,则他们选择相同交通工具的概率为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,.(1)证明:数列为等差数列;(2)求数列的前项和.18.已知圆经过,,三点.(1)求圆的标准方程;(2)若过点N的直线被圆截得的弦AB的长为,求直线的倾斜角.19.已知向量.(1)求函数的解析式及在区间上的值域;(2)求满足不等式的的集合.20.设是正项等比数列的前项和,已知,(1)求数列的通项公式;(2)令,求数列的前项和.21.的内角、、的对边分别为、、,且.(Ⅰ)求角;(Ⅱ)若,且边上的中线的长为,求边的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
利用定理及特例法逐一判断即可。【题目详解】解:如果两条直线都平行于同一个平面,那么这两条直线相交、平行或异面,故A不正确;过一条直线有且只有一个平面与已知平面垂直,不正确.反例:如果该直线本身就垂直于已知平面的话,那么可以找到无数个平面与已知平面垂直,故B不正确;如果这两条直线都在平面内且平行,那么这直线不平行于这个平面,故C不正确;如果两条直线都垂直于同一平面,则这两条直线平行,所以这两条直线共面,故D正确.故选:D.【题目点拨】本题主要考查了线线平行的判定,面面垂直的判定,线面平行的判定,线面垂直的性质,考查空间思维能力,属于中档题。2、C【解题分析】
本题首先要明确平面直角坐标系中每一象限所对应的角的范围,然后即可判断出在哪一象限中.【题目详解】第一象限所对应的角为;第二象限所对应的角为;第三象限所对应的角为;第四象限所对应的角为;因为,所以位于第三象限,故选C.【题目点拨】本题考查如何判断角所在象限,能否明确每一象限所对应的角的范围是解决本题的关键,考查推理能力,是简单题.3、C【解题分析】
利用递推公式计算出数列的前几项,找出数列的周期,然后利用周期性求出的值.【题目详解】,且,,,,所以,,则数列是以为周期的周期数列,.故选:C.【题目点拨】本题考查利用数列递推公式求数列中的项,推导出数列的周期是解本题的关键,考查分析问题和解决问题的能力,属于中等题.4、A【解题分析】
,,向量在方向上的投影为,故选A.5、B【解题分析】
直接利用向量的数量积列出方程求解即可.【题目详解】向量,,若,可得2﹣2=0,解得=1,故选B.【题目点拨】本题考查向量的数量积的应用,考查计算能力,属于基础题.6、C【解题分析】
根据框图模拟程序运算即可.【题目详解】第一次执行程序,,,继续循环,第二次执行程序,,,,继续循环,第三次执行程序,,,,继续循环,第四次执行程序,,,,继续循环,第五次执行程序,,,,跳出循环,输出,结束.故选C.【题目点拨】本题主要考查了程序框图,涉及循环结构,解题关键注意何时跳出循环,属于中档题.7、D【解题分析】
根据题中数据,直接计算出平均值与方差,即可得出结果.【题目详解】由题中数据可得,,,所以;又,,所以.故选D【题目点拨】本题主要考查平均数与方差的比较,熟记公式即可,属于基础题型.8、D【解题分析】
由得,这样可把且表示出来.【题目详解】∵,∴,,∴,∴,故选D.【题目点拨】本题考查向量的数量积,掌握数量积的定义是解题关键.9、B【解题分析】
根据频率分布直方图可知从左到右的前3个小组的频率之和,再根据频率之比可求出第二组频率,结合频数即可求解.【题目详解】由直方图可知,从左到右的前3个小组的频率之和为,又前3个小组的频率之比为,所以第二组的频率为,所以学生总数,故选B.【题目点拨】本题主要考查了频率分布直方图,频率,频数,总体,属于中档题.10、D【解题分析】
根据线线、线面和面面平行和垂直有关定理,对选项逐一分析,由此得出正确选项.【题目详解】对于A选项,两个平面垂直,一个平面内的直线不一定垂直另一个平面内的直线,故A选项错误.对于B选项,两个平面平行,一个平面内的直线和另一个平面内的直线不一定平行,故B选项错误.对于C选项,两条直线都跟同一个平面平行,它们可能相交、异面或者平行,故C选项错误.对于D选项,根据平行的传递性以及面面垂直的判定定理可知,D选项命题正确.综上所述,本小题选D.【题目点拨】本小题主要考查空间线线、线面和面面平行和垂直有关定理的运用,考查逻辑推理能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、180【解题分析】由,,可知.12、【解题分析】
利用等差数列的性质以及等差数列奇数项之和与中间项的关系进行化简求解.【题目详解】因为是等差数列,所以,又因为为等差数列,所以,故.【题目点拨】(1)在等差数列中,若,则有;(2)在等差数列.13、2+【解题分析】
因为a1∴a∴=(=2+ln14、【解题分析】
根据等比中项的性质,将等式化成即可求得答案.【题目详解】是等比数列,若,则.因为,所以,.故答案为:1.【题目点拨】本题考查等比中项的性质,考查基本运算求解能力,属于容易题.15、【解题分析】
利用三角形面积构造方程可求得,可知,从而得到;根据余弦定理,结合基本不等式可求得,代入三角形面积公式可求得最大值.【题目详解】,由余弦定理得:(当且仅当时取等号)本题正确结果:【题目点拨】本题考查解三角形问题中的三角形面积的最值问题的求解;求解最值问题的关键是能够通过余弦定理构造等量关系,进而利用基本不等式求得边长之积的最值,属于常考题型.16、【解题分析】
利用古典概型的概率求解.【题目详解】甲、乙两人选择交通工具总的选择有种,他们选择相同交通工具有3种情况,所以他们选择相同交通工具的概率为.故答案为:.【题目点拨】本题考查古典概型,要用计数原理进行计数,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解题分析】
(1)将已知条件凑配成,由此证得数列为等差数列.(2)由(1)求得数列的通项公式,进而求得的表达式,利用分组求和法求得.【题目详解】(1)证明:∵∴又∵∴所以数列是首项为1,公差为2的等差数列;(2)由(1)知,,所以.所以【题目点拨】本小题主要考查根据递推关系式证明等差数列,考查分组求和法,属于中档题.18、(1)(2)30°或90°.【解题分析】
(1)解法一:将圆的方程设为一般式,将题干三个点代入圆的方程,解出相应的参数值,即可得出圆的一般方程,再化为标准方程;解法二:求出线段和的中垂线方程,将两中垂线方程联立求出交点坐标,即为圆心坐标,然后计算为圆的半径,即可写出圆的标准方程;(2)先利用勾股定理计算出圆心到直线的距离为,并对直线的斜率是否存在进行分类讨论:一是直线的斜率不存在,得出直线的方程为,验算圆心到该直线的距离为;二是当直线的斜率存在时,设直线的方程为,并表示为一般式,利用圆心到直线的距离为得出关于的方程,求出的值.结合前面两种情况求出直线的倾斜角.【题目详解】(1)解法一:设圆的方程为,则∴即圆为,∴圆的标准方程为;解法二:则中垂线为,中垂线为,∴圆心满足∴,半径,∴圆的标准方程为.(2)①当斜率不存在时,即直线到圆心的距离为1,也满足题意,此时直线的倾斜角为90°,②当斜率存在时,设直线的方程为,由弦长为4,可得圆心到直线的距离为,,∴,此时直线的倾斜角为30°,综上所述,直线的倾斜角为30°或90°.【题目点拨】本题考查圆的方程以及直线截圆所得弦长的计算,在求直线与圆所得弦长的计算中,问题的核心要转化为弦心距的计算,弦心距的计算主要有以下两种方式:一是利用勾股定理计算,二是利用点到直线的距离公式计算圆心到直线的距离.19、(1),值域为(2)【解题分析】
(1)根据向量的数量积,得到函数解析式,再根据正弦函数的性质,即可得出结果;(2)先由题意,将不等式化为,结合正弦函数的性质,即可得出结果.【题目详解】解:(1),由,得,,,在区间上的值域为(2)由,得,即所以解得,的解集为【题目点拨】本题主要考查正弦型函数的值域,以及三角不等式,熟记正弦函数的性质即可,属于常考题型.20、(1);(2)【解题分析】
(1)设正项等比数列的公比为,当时,可验证出,可知;根据可构造方程求得,进而根据等比数列通项公式可求得结果;(2)由(1)可得,采用错位相减法即可求得结果.【题目详解】(1)设正项等比数列的公比为当时,,解得:,不合题意由得:,又整理得:,即,解得:(2)由(1)得:…①则…②①②得:【题目点拨】本题考查等比数列通项公式的求解、错位相减法求解数列的前项和;关键是能够得到数列的通项公式后,根据等差乘以等比的形式确
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022年大学轻工纺织食品专业大学物理下册开学考试试题C卷-附解析
- 石河子大学《云计算概论》2023-2024学年期末试卷
- 大学生举办母亲节策划书集合10篇
- 学校配套设施施工组织设计
- 石河子大学《体操》2021-2022学年第一学期期末试卷
- 石河子大学《农村社会学》2022-2023学年第一学期期末试卷
- 石河子大学《畜产品加工工艺学》2022-2023学年第一学期期末试卷
- 沈阳理工大学《模拟电子技术基础》2021-2022学年期末试卷
- 沈阳理工大学《机械制造基础》2023-2024学年第一学期期末试卷
- 收费站收费班安全培训
- 《创意改善生活》课件 2024-2025学年湘美版(2024)初中美术七年级上册
- 2024-2025学年 浙教版七年级数学上册期中(第1-4章)培优试卷
- 个人简历模板(5套完整版)
- CHT 1027-2012 数字正射影像图质量检验技术规程(正式版)
- 文艺复兴经典名著选读智慧树知到期末考试答案章节答案2024年北京大学
- 《中医药健康知识讲座》课件
- 劳务派遣劳务外包服务方案(技术方案)
- 管道定额价目表
- 工期日历天计算器
- 相敏检波电路
- 第一章特殊教育概述-特殊教育概论(共4页)
评论
0/150
提交评论