版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省文登一中2024届数学高一下期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为定义在上的函数,其图象关于轴对称,当时,有,且当时,,若方程()恰有5个不同的实数解,则的取值范围是()A. B. C. D.2.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是()A.①③④ B.②④ C.②③④ D.①②③3.设为等差数列的前n项和,若,则使成立的最小正整数n为()A.6 B.7 C.8 D.94.某几何体的三视图如图所示,则它的体积是()A.B.C.D.5.若向量的夹角为,且,,则向量与向量的夹角为()A. B. C. D.6.执行如图所示的程序框图,则输出的值为()A.7 B.6 C.5 D.47.计算的值为()A. B. C. D.8.()A.0 B. C. D.19.如图,正方体ABCD-A1B1C1D1的棱长为2,E是棱AB的中点,F是侧面AA1D1D内一点,若EF∥平面BB1D1D,则EF长度的范围为()A. B. C. D.10.的内角、、所对的边分别为、、,下列命题:(1)三边、、既成等差数列,又成等比数列,则是等边三角形;(2)若,则是等腰三角形;(3)若,则;(4)若,则;(5),,若唯一确定,则.其中,正确命题是()A.(1)(3)(4) B.(1)(2)(3) C.(1)(2)(5) D.(3)(4)(5)二、填空题:本大题共6小题,每小题5分,共30分。11.将正整数按下图方式排列,2019出现在第行第列,则______;12345678910111213141516………12.若函数的图象与直线恰有两个不同交点,则的取值范围是________.13.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则直线不经过第一象限的概率为__________.14.设数列的前项和为满足:,则_________.15.设为等差数列的前n项和,,则________.16.已知,均为锐角,,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,.(1)若,在集合中取值,求满足的概率;(2)若,在区间内取值,求满足的概率.18.如图,四棱锥P-ABCD中,底面ABCD,,,,M为线段AD上一点,,N为PC的中点.(1)证明:平面PAB;(2)求直线AN与平面PMN所成角的余弦值.19.已知三棱锥的体积为1.在侧棱上取一点,使,然后在上取一点,使,继续在上取一点,使,……按上述步骤,依次得到点,记三棱锥的体积依次构成数列,数列的前项和.(1)求数列和的通项公式;(2)记,为数列的前项和,若不等式对一切恒成立,求实数的取值范围.20.求函数的最大值21.在直角坐标系中,以坐标原点为圆心的圆与直线相切。求圆的方程;若圆上有两点关于直线对称,且,求直线的方程;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】当时,有,所以,所以函数在上是周期为的函数,从而当时,,有,又,即,有易知为定义在上的偶函数,所以可作出函数的图象与直线有个不同的交点,所以,解得,故选C.点睛:本题主要考查了函数的奇偶性、周期性、对称性,函数与方程等知识的综合应用,着重考查了数形结合思想研究直线与函数图象的交点问题,解答时现讨论得到分段函数的解析式,然后做出函数的图象,将方程恰有5个不同的实数解转化为直线与函数的图象由5个不同的交点,由数形结合法列出不等式组是解答的关键.2、A【解题分析】
分别当截面平行于正方体的一个面时,当截面过正方体的两条相交的体对角线时,当截面既不过体对角线也不平行于任一侧面时,进行判定,即可求解.【题目详解】由题意,当截面平行于正方体的一个面时得③;当截面过正方体的两条相交的体对角线时得④;当截面既不过正方体体对角线也不平行于任一侧面时可能得①;无论如何都不能得②.故选A.【题目点拨】本题主要考查了正方体与球的组合体的截面问题,其中解答中熟记空间几何体的结构特征是解答此类问题的关键,着重考查了空间想象能力,以及推理能力,属于基础题.3、C【解题分析】
利用等差数列下标和的性质可确定,,,由此可确定最小正整数.【题目详解】且,使得成立的最小正整数故选:【题目点拨】本题考查等差数列性质的应用问题,关键是能够熟练应用等差数列下标和性质化简前项和公式.4、A【解题分析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算.由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.5、B【解题分析】
结合数量积公式可求得、、的值,代入向量夹角公式即可求解.【题目详解】设向量与的夹角为,因为的夹角为,且,,所以,,所以,又因为所以,故选B【题目点拨】本题考查向量的数量积公式,向量模、夹角的求法,考查化简计算的能力,属基础题.6、C【解题分析】
由流程图循环4次,输出,即可得出结果..【题目详解】初始值,,是,第一次循环:,,是,第二次循环:,,是,第三次循环:,,是,第四次循环:S,,否,输出.故选C.【题目点拨】本题考查程序框图的循环,分析框图的作用,逐步执行即可,属于基础题.7、D【解题分析】
直接由二倍角的余弦公式,即可得解.【题目详解】由二倍角公式得:,故选D.【题目点拨】本题考查了二倍角的余弦公式,属于基础题.8、C【解题分析】试题分析:考点:两角和正弦公式9、C【解题分析】
过作,交于点,交于,根据线面垂直关系和勾股定理可知;由平面可证得面面平行关系,利用面面平行性质可证得为中点,从而得到最小值为重合,最大值为重合,计算可得结果.【题目详解】过作,交于点,交于,则底面平面,平面,平面平面,又平面平面又平面平面,平面为中点为中点,则为中点即在线段上,,则线段长度的取值范围为:本题正确选项:【题目点拨】本题考查立体几何中线段长度取值范围的求解,关键是能够确定动点的具体位置,从而找到临界状态;本题涉及到立体几何中线面平行的性质、面面平行的判定与性质等定理的应用.10、A【解题分析】
由等差数列和等比数列中项性质可判断(1);由正弦定理和二倍角公式、诱导公式,可判断(2);由三角形的边角关系和余弦函数的单调性可判断(3);由余弦定理和基本不等式可判断(4);由正弦定理和三角形的边角关系可判断(5).【题目详解】解:若、、既成等差数列,又成等比数列,则,,则,得,得,得,则是等边三角形,故(1)正确;若,则,则,则或,即或,则△ABC是等腰或直角三角形,故(2)错误;若,则,则,故(3)正确;若,则,则,由得,则,则,故(4)正确;若,,则,即,又,若唯一确定,则或,则或,故(5)错误;故选:A.【题目点拨】本题主要考查正弦定理和余弦定理的运用,以及三角形的形状的判断,考查化简运算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、128【解题分析】
观察数阵可知:前行一共有个数,且第行的最后一个数为,且第行有个数,由此可推断出所在的位置.【题目详解】因为前行一共有个数,且第行的最后一个数为,又因为,所以在第行,且第45行最后数为,又因为第行有个数,,所以在第列,所以.故答案为:.【题目点拨】本题考查数列在数阵中的应用,着重考查推理能力,难度一般.分析数列在数阵中的应用问题,可从以下点分析问题:观察每一行数据个数与行号关系,同时注意每一行开始的数据或结尾数据,所有行数据的总个数,注意等差数列的求和公式的运用.12、【解题分析】
作出函数的图像,根据图像可得答案.【题目详解】因为,所以,所以,所以,作出函数的图像,由图可知故答案为:【题目点拨】本题考查了正弦型函数的图像,考查了数形结合思想,属于基础题.13、【解题分析】
首先求出试验发生包含的事件的取值所有可能的结果,满足条件事件直线不经过第一象限,符合条件的有种结果,根据古典概型概率公式得到结果.【题目详解】试验发生包含的事件,,得到的取值所有可能的结果有:共种结果,由得,当时,直线不经过第一象限,符合条件的有种结果,所以直线不经过第一象限的概率.故答案为:【题目点拨】本题是一道古典概型题目,考查了古典概型概率公式,解题的关键是求出列举基本事件,属于基础题.14、【解题分析】
利用,求得关于的递推关系式,利用配凑法证得是等比数列,由此求得数列的通项公式,进而求得的表达式,从而求得的值.【题目详解】当时,.由于,而,故,故答案为:.【题目点拨】本小题主要考查配凑法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.15、54.【解题分析】
设首项为,公差为,利用等差数列的前n项和公式列出方程组,解方程求解即可.【题目详解】设首项为,公差为,由题意,可得解得所以.【题目点拨】本题主要考查了等差数列的前n项和公式,解方程的思想,属于中档题.16、【解题分析】
先求出,,再由,并结合两角和与差的正弦公式求解即可.【题目详解】由题意,可知,则,又,则,或者,因为为锐角,所以不成立,即成立,所以.故.故答案为:.【题目点拨】本题考查两角和与差的正弦公式的应用,考查同角三角函数基本关系的应用,考查学生的计算求解能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)首先求出包含的基本事件个数,由,由向量的坐标运算可得,列出满足条件的基本事件个数,根据古典概型概率计算公式即可求解.(2)根据题意全部基本事件的结果为,满足的基本事件的结果为,利用几何概型概率计算公式即可求解.【题目详解】(1),的所有取值共有个基本事件.由,得,满足包含的基本事件为,,,,,共种情形,故.(2)若,在上取值,则全部基本事件的结果为,满足的基本事件的结果为.画出图形如图,正方形的面积为,阴影部分的面积为,故满足的概率为.【题目点拨】本题考查了古典概型概率计算公式、几何概型概率计算公式,属于基础题.18、(1)证明见解析;(2)【解题分析】
(1)如图所示,为中点,连接,证明为平行四边形得到答案.(2)分别以为轴建立直角坐标系,平面的法向量为,计算向量夹角得到答案.【题目详解】(1)如图所示,为中点,连接.为中点,N为PC的中点,故,,,故,且,故为平行四边形.故,平面,故平面PAB.(2)中点为,,故,故,底面ABCD,故,.分别以为轴建立直角坐标系,则,,,,.设平面的法向量为,则,即,取得到,故,故直线AN与平面PMN所成角的余弦值为.【题目点拨】本题考查了线面平行,线面夹角,意在考查学生的空间想象能力和计算能力.19、(1).;(2).【解题分析】
(1)由三棱锥的体积公式可得是等比数列,从而可求得其通项公式,利用可求得,但要注意;(2)用错位相减法求得,化简不等式,分离参数,转化为求函数的最值.【题目详解】(1)由题意,∴,三棱锥的体积就是三棱锥的体积,它们都以为底面,因此它们的体积比等于它们高的比,即到平面的距离之比,又都在直线上,所以点到平面的距离之比就等于棱长的比,∴,,,∴.,则,时,,也适合.∴.(2)由(1),,,两式相减得:,∴.不等式为,即,设,则,∴当时,递增,当,递减,是中的最大项,.不等式对恒成立,则,∴或.故的范围是.【题目点拨】本题考查棱锥的体积,考查等比数列的通项公式,考查由求通项,考查错位相减法求和,考查不等式恒成立问题.考查数列的单调性,难度较大.对学生的运算求解能力要求较高.在由求时要注意需另外求解,证明数列单调性时可以有数列的前后项作差或作商比较.20、最大值为5【解题分析】
本题首先可以根据同角三角函数关系以及配方将函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022年大学轻工纺织食品专业大学物理下册开学考试试题C卷-附解析
- 石河子大学《云计算概论》2023-2024学年期末试卷
- 大学生举办母亲节策划书集合10篇
- 学校配套设施施工组织设计
- 石河子大学《体操》2021-2022学年第一学期期末试卷
- 石河子大学《农村社会学》2022-2023学年第一学期期末试卷
- 石河子大学《畜产品加工工艺学》2022-2023学年第一学期期末试卷
- 沈阳理工大学《模拟电子技术基础》2021-2022学年期末试卷
- 沈阳理工大学《机械制造基础》2023-2024学年第一学期期末试卷
- 收费站收费班安全培训
- 从分数到分式的教学设计
- 狭窄隧道汽车双向行PLC控制设计
- 《2022年上海市初中语文课程终结性评价指南》中规定的150个文言实词
- 修复科病历书写要求和标准(整理自北医的材料)
- 移相整流变压器设计及试验
- 05S502阀门井图集
- 舒方特方格练习(共6页)
- 90、808系列铝合金门窗自动计算下料表
- 管道定额价目表
- 工期日历天计算器
- 相敏检波电路
评论
0/150
提交评论