![上海市十中2024届数学高一下期末考试模拟试题含解析_第1页](http://file4.renrendoc.com/view10/M01/18/3A/wKhkGWWiwqqAEKBcAAGuBCxT9c4139.jpg)
![上海市十中2024届数学高一下期末考试模拟试题含解析_第2页](http://file4.renrendoc.com/view10/M01/18/3A/wKhkGWWiwqqAEKBcAAGuBCxT9c41392.jpg)
![上海市十中2024届数学高一下期末考试模拟试题含解析_第3页](http://file4.renrendoc.com/view10/M01/18/3A/wKhkGWWiwqqAEKBcAAGuBCxT9c41393.jpg)
![上海市十中2024届数学高一下期末考试模拟试题含解析_第4页](http://file4.renrendoc.com/view10/M01/18/3A/wKhkGWWiwqqAEKBcAAGuBCxT9c41394.jpg)
![上海市十中2024届数学高一下期末考试模拟试题含解析_第5页](http://file4.renrendoc.com/view10/M01/18/3A/wKhkGWWiwqqAEKBcAAGuBCxT9c41395.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市十中2024届数学高一下期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,且,则()A.2 B. C. D.2.已知两点,若点是圆上的动点,则面积的最大值为()A.13 B.3 C. D.3.在中,角所对的边分别为.若,,,则等于()A. B. C. D.4.如图,一个边长为的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入了粒芝麻,经过统计,落在月牙形图案内的芝麻有粒,则这个月牙图案的面积约为()A. B. C. D.5.在四边形中,,,将沿折起,使平面平面,构成三棱锥,如图,则在三棱锥中,下列结论正确的是()A.平面平面B.平面平面C.平面平面D.平面平面6.已知过原点的直线与圆C:相交于不同的两点,且线段的中点坐标为,则弦长为()A.2 B.3 C.4 D.57.不等式x+5(x-1)A.[-3,1C.[128.设是两条不同的直线,是两个不同的平面,则下列命题中正确的是()A.若,则B.若,则C.若,则D.若,则9.已知中,,,,则BC边上的中线AM的长度为()A. B. C. D.10.过两点A(4,y),B(2,-3)的直线的倾斜角是135°,则y等于()A.1 B.5 C.-1 D.-5二、填空题:本大题共6小题,每小题5分,共30分。11.在数列中,,当时,.则数列的前项和是_____.12.过点直线与轴的正半轴,轴的正半轴分别交于、两点,为坐标原点,当最小时,直线的一般方程为______.13.直线和将单位圆分成长度相等的四段弧,则________.14.设,则等于________.15.记,则函数的最小值为__________.16.一个圆锥的侧面积为,底面积为,则该圆锥的体积为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当弦AB被点P平分时,写出直线l的方程;(2)当直线l的倾斜角为45º时,求弦AB的长.18.已知从甲地到乙地的公路里程约为240(单位:km).某汽车每小时耗油量Q(单位:L)与速度x(单位:)()的关系近似符合以下两种函数模型中的一种(假定速度大小恒定):①,②,经多次检验得到以下一组数据:x04060120Q020(1)你认为哪一个是符合实际的函数模型,请说明理由;(2)从甲地到乙地,这辆车应以多少速度行驶才能使总耗油量最少?19.设甲、乙、丙三个乒乓球协会分别选派3,1,2名运动员参加某次比赛,甲协会运动员编号分别为,,,乙协会编号为,丙协会编号分别为,,若从这6名运动员中随机抽取2名参加双打比赛.(1)用所给编号列出所有可能抽取的结果;(2)求丙协会至少有一名运动员参加双打比赛的概率;(3)求参加双打比赛的两名运动员来自同一协会的概率.20.某地合作农场的果园进入盛果期,果农利用互联网电商渠道销售苹果,苹果单果直径不同则单价不同,为了更好的销售,现从该合作农场果园的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间内(单位:),统计的茎叶图如图所示:(Ⅰ)按分层抽样的方法从单果直径落在,的苹果中随机抽取6个,则从,的苹果中各抽取几个?(Ⅱ)从(Ⅰ)中选出的6个苹果中随机抽取2个,求这两个苹果单果直径均在内的概率;(Ⅲ)以此茎叶图中单果直径出现的频率代表概率,若该合作农场的果园有20万个苹果约5万千克待出售,某电商提出两种收购方案:方案:所有苹果均以5.5元/千克收购;方案:按苹果单果直径大小分3类装箱收购,每箱装25个苹果,定价收购方式为:单果直径在内按35元/箱收购,在内按45元/箱收购,在内按55元/箱收购.包装箱与分拣装箱费用为5元/箱(该费用由合作农场承担).请你通过计算为该合作农场推荐收益最好的方案.21.“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形的麦田里成为守望者,如图所示,为了分割麦田,他将连接,设中边所对的角为,中边所对的角为,经测量已知,.(1)霍尔顿发现无论多长,为一个定值,请你验证霍尔顿的结论,并求出这个定值;(2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记与的面积分别为和,为了更好地规划麦田,请你帮助霍尔顿求出的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
根据向量平行得到,再利用和差公式计算得到答案.【题目详解】向量,且,则..故选:.【题目点拨】本题考查了向量平行求参数,和差公式,意在考查学生的综合应用能力.2、C【解题分析】
先求出直线方程,然后计算出圆心到直线的距离,根据面积的最大时,以及高最大的条件,可得结果.【题目详解】由,利用直线的截距式所以直线方程为:即由圆,即所以圆心为,半径为则圆心到直线的距离为要使面积的最大,则圆上的点到最大距离为所以面积的最大值为故选:C【题目点拨】本题考查圆与直线的几何关系以及点到直线的距离,属基础题.3、B【解题分析】
利用正弦定理可求.【题目详解】由正弦定理得.故选B.【题目点拨】本题考查正弦定理的应用,属于容易题.4、A【解题分析】
根据几何概型直接进行计算即可.【题目详解】月牙形图案的面积约为:本题正确选项:【题目点拨】本题考查几何概型的应用,属于基础题.5、D【解题分析】
折叠过程中,仍有,根据平面平面可证得平面,从而得到正确的选项.【题目详解】在直角梯形中,因为为等腰直角三角形,故,所以,故,折起后仍然满足.因为平面平面,平面,平面平面,所以平面,因平面,所以.又因为,,所以平面,因平面,所以平面平面.【题目点拨】面面垂直的判定可由线面垂直得到,而线面垂直可通过线线垂直得到,注意面中两条直线是相交的.由面面垂直也可得到线面垂直,注意线在面内且线垂直于两个平面的交线.6、A【解题分析】
根据两直线垂直,斜率相乘等于-1,求得直线的斜率为,进而求出圆心到直线的距离,再代入弦长公式求得弦长值.【题目详解】圆的标准方程为:,设圆心,,,,,直线的方程为:,到直线的距离,.【题目点拨】求直线与圆相交的弦长问题,核心是利用点到直线的距离公式,求圆心到直线的距离.7、D【解题分析】试题分析:x+5(x-1)2≥2⇔x+5≥2(x-1)2且x≠1考点:分式不等式解法8、D【解题分析】
根据线线、线面和面面平行和垂直有关定理,对选项逐一分析,由此得出正确选项.【题目详解】对于A选项,两个平面垂直,一个平面内的直线不一定垂直另一个平面内的直线,故A选项错误.对于B选项,两个平面平行,一个平面内的直线和另一个平面内的直线不一定平行,故B选项错误.对于C选项,两条直线都跟同一个平面平行,它们可能相交、异面或者平行,故C选项错误.对于D选项,根据平行的传递性以及面面垂直的判定定理可知,D选项命题正确.综上所述,本小题选D.【题目点拨】本小题主要考查空间线线、线面和面面平行和垂直有关定理的运用,考查逻辑推理能力,属于基础题.9、A【解题分析】
利用平行四边形对角线的平方和等于四条边的平方和,求的长.【题目详解】延长至,使,连接、,如图所示;由题意知四边形是平行四边形,且满足,即,解得,所以边上的中线的长度为.故选:A.【题目点拨】本题考查平行四边形对角线的平方和等于四条边的平方和应用问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.10、D【解题分析】∵过两点A(4,y),B(2,-3)的直线的倾斜角是135°,∴,解得。选D。二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
先利用累加法求出数列的通项公式,然后将数列的通项裂开,利用裂项求和法求出数列的前项和.【题目详解】当时,.所以,,,,,.上述等式全部相加得,.,因此,数列的前项和为,故答案为:.【题目点拨】本题考查累加法求数列通项和裂项法求和,解题时要注意累加法求通项和裂项法求和对数列递推公式和通项公式的要求,考查运算求解能力,属于中等题.12、【解题分析】
设直线的截距式方程为,利用该直线过可得,再利用基本不等式可求何时即取最小值,从而得到相应的直线方程.【题目详解】设直线的截距式方程为,其中且.因为直线过,故.所以,由基本不等式可知,当且仅当时等号成立,故当取最小值时,直线方程为:.填.【题目点拨】直线方程有五种形式,常用的形式有点斜式、斜截式、截距式、一般式,垂直于的轴的直线没有点斜式、斜截式和截距式,垂直于轴的直线没有截距式,注意根据题设所给的条件选择合适的方程的形式,特别地,如果考虑的问题是与直线、坐标轴围成的直角三角形有关的问题,可考虑利用截距式.13、0【解题分析】
将单位圆分成长度相等的四段弧,每段弧对应的圆周角为,计算得到答案.【题目详解】如图所示:将单位圆分成长度相等的四段弧,每段弧对应的圆周角为或故答案为0【题目点拨】本题考查了直线和圆相交问题,判断每段弧对应的圆周角为是解题的关键.14、【解题分析】
首先根据题中求出的周期,然后利用周期性即可求出答案.【题目详解】由题知,有,故的周期为,故,又因为,有.故答案为:.【题目点拨】本题考查了三角函数的周期性,属于基础题.15、4【解题分析】
利用求解.【题目详解】,当时,等号成立.故答案为:4【题目点拨】本题主要考查绝对值不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.16、【解题分析】
设圆锥的底面半径为,母线长为,由圆锥的侧面积、圆面积公式列出方程组求解,代入圆锥的体积公式求解.【题目详解】设圆锥的底面半径为,母线长为,其侧面积为,底面积为,则,解得,,∴高===,∴==.故答案为:.【题目点拨】本题考查圆锥的体积的求法,考查圆锥的侧面积、底面积、体积公式等基础知识,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】分析:(1)为的中点,故,所以斜率,由此求解直线方程(2)已知直线方程,利用半径和点到直线的距离,求解弦长.详解:(1)P为AB中点C(1,0),P(2,2)(2)的方程为由已知,又直线过点P(2,2)直线的方程为即x-y=0C到直线l的距离,点睛:利用圆与直线的几何性质解圆有关的问题常见解法,圆心到直线的距离、半径、弦长之间的关系为.18、(1)选择模型①,见解析;(2)80.【解题分析】
(1)由题意可知所选函数模型应为单调递增函数,即可判断选择;(2)将,代入函数型①,可得出的值,进而可得出总耗油量关于速度的函数关系式,进而得解.【题目详解】(1)选择模型①理由:由题意可知所选函数模型应为单调递增函数,而函数模型②为一个单调递减函数,故选择模型①.(2)将,代入函数型①,可得:,则,总耗油量:,当时,W有最小值30.甲地到乙地,这辆车以80km/h的速度行驶才能使总耗油量最少.【题目点拨】本题考查函数模型的实际应用,考查逻辑思维能力,考查实际应用能力,属于常考题.19、(1)15种;(2);(3)【解题分析】
(1)从这6名运动员中随机抽取2名参加双打比赛,利用列举法即可得到所有可能的结果.(2利用列举法得到“丙协会至少有一名运动员参加双打比赛”的基本事件的个数,利用古典概型,即可求解;(3)由两名运动员来自同一协会有,,,,共4种,利用古典概型,即可求解.【题目详解】(1)由题意,从这6名运动员中随机抽取2名参加双打比赛,所有可能的结果为,,,,,,,,,,,,,,,共15种.(2)因为丙协会至少有一名运动员参加双打比赛,所以编号为,的两名运动员至少有一人被抽到,其结果为:设“丙协会至少有一名运动员参加双打比赛”为事件,,,,,,,,,,共9种,所以丙协会至少有一名运动员参加双打比赛的概率.(3)两名运动员来自同一协会有,,,,共4种,参加双打比赛的两名运动员来自同一协会的概率为.【题目点拨】本题主要考查了古典概型及其概率的计算问题,其中解答中准确利用列举法的基本事件的总数,找出所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.20、(Ⅰ)4个;(Ⅱ);(Ⅲ)方案是【解题分析】
(Ⅰ)单果直径落在,,,的苹果个数分别为6,12,分层抽样的方法从单果直径落在,,,的苹果中随机抽取6个,单果直径落在,,,的苹果分别抽取2个和4个;(Ⅱ)从这6个苹果中随机抽取2个,基本事件总数,这两个苹果单果直径均在,内包含的基本事件个数,由此能求出这两个苹果单果直径均在,内的概率;(Ⅲ)分别求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年5月幼儿园教师工作总结(3篇)
- 施工合同心得(3篇)
- 2024-2025年云南省德宏傣族景颇族自治州民族第一中学高一上学期第二次月考历史试卷
- 2025年化工石油工程施工合同示范文本
- 2025年专项授权合同文本
- 2025年住宅吊顶装修工程协议样本
- 2025年泰国旅游项目规划申请报告模板
- 2025年劳动合同签订解除法律规定
- 2025年高压清洗车项目申请报告模式
- 2025年最低生活保障服务项目立项申请报告模范
- 2025年益阳医学高等专科学校高职单招职业技能测试近5年常考版参考题库含答案解析
- 2024年临床医师定期考核试题中医知识题库及答案(共330题) (二)
- 2024 年陕西公务员考试行测试题(B 类)
- 2025-2030年中国反渗透膜行业市场发展趋势展望与投资策略分析报告
- 湖北省十堰市城区2024-2025学年九年级上学期期末质量检测道德与法治试题 (含答案)
- 幼儿园师德师风培训内容
- 《榜样9》观后感心得体会四
- 人教版小学数学一年级下册教案
- 2025年山东省济宁高新区管委会“优才”招聘20人历年高频重点提升(共500题)附带答案详解
- 2025年中国社会科学评价研究院第一批专业技术人员招聘2人历年高频重点提升(共500题)附带答案详解
- (2024年高考真题)2024年普通高等学校招生全国统一考试数学试卷-新课标Ⅰ卷(含部分解析)
评论
0/150
提交评论