2024届浙江省富阳市第二中学数学高一第二学期期末考试试题含解析_第1页
2024届浙江省富阳市第二中学数学高一第二学期期末考试试题含解析_第2页
2024届浙江省富阳市第二中学数学高一第二学期期末考试试题含解析_第3页
2024届浙江省富阳市第二中学数学高一第二学期期末考试试题含解析_第4页
2024届浙江省富阳市第二中学数学高一第二学期期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省富阳市第二中学数学高一第二学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在锐角中ΔABC,角A,B所对的边长分别为a,b.若2asinA.π12B.π6C.π2.已知函数在区间内单调递增,且,若,,,则、、的大小关系为()A. B. C. D.3.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有().A. B. C. D.4.已知在R上是奇函数,且满足,当时,,则()A.-2 B.2 C.-98 D.985.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C6.从一批产品中取出三件产品,设事件为“三件产品全不是次品”,事件为“三件产品全是次品”,事件为“三件产品不全是次品”,则下列结论正确的是()A.事件与互斥 B.事件与互斥C.任何两个事件均互斥 D.任何两个事件均不互斥7.下列不等式正确的是()A.若,则 B.若,则C.若,则 D.若,则8.在正项等比数列中,,数列的前项之和为()A. B. C. D.9.已知函数,则()A.的最小正周期为,最大值为1 B.的最小正周期为,最大值为C.的最小正周期为,最大值为1 D.的最小正周期为,最大值为10.在中,若,,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知均为正数,则的最大值为______________.12.将正偶数按下表排列成列,每行有个偶数的蛇形数列(规律如表中所示),则数字所在的行数与列数分别是_______________.第列第列第列第列第列第行第行第行第行……13.已知,为锐角,且,则__________.14.如果是奇函数,则=.15.在空间直角坐标系中,点关于原点的对称点的坐标为__________.16.若一组样本数据,,,,的平均数为,则该组样本数据的方差为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在数列中,,,且满足,.(1)求数列的通项公式;(2)设,,求数列的前项和.18.的内角,,的对边分别为,,,为边上一点,为的角平分线,,.(1)求的值:(2)求面积的最大值.19.已知.(1)求与的夹角;(2)求.20.某厂生产产品的年固定成本为250万元,每生产千件需另投人成本万元.当年产量不足80千件时,(万元);当年产量不小于80千件时,万元,每千件产品的售价为50万元,该厂生产的产品能全部售完.(1)写出年利润万元关于千件的函数关系式;(2)当年产量为多少千件时该厂当年的利润最大?21.若数列中存在三项,按一定次序排列构成等比数列,则称为“等比源数列”。(1)在无穷数列中,,,求数列的通项公式;(2)在(1)的结论下,试判断数列是否为“等比源数列”,并证明你的结论;(3)已知无穷数列为等差数列,且,(),求证:数列为“等比源数列”.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】试题分析:∵2a考点:正弦定理解三角形2、B【解题分析】

由偶函数的性质可得出函数在区间上为减函数,由对数的性质可得出,由偶函数的性质得出,比较出、、的大小关系,再利用函数在区间上的单调性可得出、、的大小关系.【题目详解】,则函数为偶函数,函数在区间内单调递增,在该函数在区间上为减函数,,由换底公式得,由函数的性质可得,对数函数在上为增函数,则,指数函数为增函数,则,即,,因此,.【题目点拨】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.3、B【解题分析】

根据所给数据,分别求出平均数为a,中位数为b,众数为c,然后进行比较可得选项.【题目详解】,中位数为,众数为.故选:B.【题目点拨】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.4、A【解题分析】

由在R上是奇函数且周期为4可得,即可算出答案【题目详解】因为在R上是奇函数,且满足所以因为当时,所以故选:A【题目点拨】本题考查的是函数的奇偶性和周期性,较简单.5、B【解题分析】

由集合A,B,C,求出B与C的并集,判断A与C的包含关系,以及A,B,C三者之间的关系即可.【题目详解】由题BA,∵A={第一象限角},B={锐角},C={小于90°的角},∴B∪C={小于90°的角}=C,即BC,则B不一定等于A∩C,A不一定是C的真子集,三集合不一定相等,故选:B.【题目点拨】此题考查了集合间的基本关系及运算,熟练掌握象限角,锐角,以及小于90°的角表示的意义是解本题的关键,是易错题6、B【解题分析】

根据互斥事件的定义,逐个判断,即可得出正确选项.【题目详解】为三件产品全不是次品,指的是三件产品都是正品,为三件产品全是次品,为三件产品不全是次品,它包括一件次品,两件次品,三件全是正品三个事件由此知:与是互斥事件;与是包含关系,不是互斥事件;与是互斥事件,故选B.【题目点拨】本题主要考查互斥事件定义的应用.7、B【解题分析】试题分析:A.若c<0,则不等号改变,若c=0,两式相等,故A错误;B.若,则,故,故B正确;C.若b=0,则表达是不成立故C错误;D.c=0时错误.考点:不等式的性质.8、B【解题分析】

根据等比数列的性质,即可解出答案。【题目详解】故选B【题目点拨】本题考查等比数列的性质,同底对数的运算,属于基础题。9、D【解题分析】

结合二倍角公式,对化简,可求得函数的最小正周期和最大值.【题目详解】由题意,,所以,当时,取得最大值为.由函数的最小正周期为,故的最小正周期为.故选:D.【题目点拨】本题考查三角函数周期性与最值,考查学生的计算求解能力,属于基础题.10、D【解题分析】

由正弦定理构造方程即可求得结果.【题目详解】由正弦定理得:本题正确选项:【题目点拨】本题考查正弦定理解三角形的问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据分子和分母的特点把变形为,运用重要不等式,可以求出的最大值.【题目详解】(当且仅当且时取等号),(当且仅当且时取等号),因此的最大值为.【题目点拨】本题考查了重要不等式,把变形为是解题的关键.12、行列【解题分析】

设位于第行第列,观察表格中数据的规律,可得出,由此可求出的值,再观察奇数行和偶数行最小数的排列,可得出的值,由此可得出结果.【题目详解】设位于第行第列,由表格中的数据可知,第行最大的数为,则,解得,由于第行最大的数为,所以,是表格中第行最小的数,由表格中的规律可知,奇数行最小的数放在第列,那么.因此,位于表格中第行第列.故答案为:行列.【题目点拨】本题考查归纳推理,解题的关键就是要结合表格中数据所呈现的规律来进行推理,考查推理能力,属于中等题.13、【解题分析】

由题意求得,再利用两角和的正切公式求得的值,可得的值.【题目详解】,为锐角,且,即,.再结合,则,故答案为.【题目点拨】本题主要考查两角和的正切公式的应用,属于基础题.14、-2【解题分析】试题分析:∵,∴,∴,∴=-2考点:本题考查了三角函数的性质点评:对于定义域为R的奇函数恒有f(0)=0.利用此结论可解决此类问题15、【解题分析】

空间直角坐标系中,关于原点对称,每个坐标变为原来的相反数.【题目详解】空间直角坐标系中,关于原点对称,每个坐标变为原来的相反数.点关于原点的对称点的坐标为故答案为:【题目点拨】本题考查了空间直角坐标系关于原点对称,属于简单题.16、【解题分析】因为该组样本数据的平均数为2017,所以,解得,则该组样本数据的方差为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)由题意知,数列是等差数列,可设该数列的公差为,根据题中条件列方程解出的值,再利用等差数列的通项公式可求出数列的通项公式;(2)先求出数列的通项公式,并将该数列的通项裂项,然后利用裂项法求出数列的前项和.【题目详解】(1)对任意的,,则数列是等差数列,设该数列的公差为,则,解得,;(2),因此,.【题目点拨】本题考查等差数列的通项公式,同时也考查了裂项求和法,解题时要熟悉等差数列的几种判断方法,同时也要熟悉裂项求和法对数列通项结构的要求,考查运算求解能力,属于中等题.18、(1)(2)3【解题分析】

(1)由,,根据三角形面积公式可知,,再根据角平分线的定义可知,到,的距离相等,所以,即可求出;(2)先根据(1)可得,,由平方关系得,再根据三角形的面积公式,可化简得,然后根据基本不等式即可求出面积的最大值.【题目详解】(1)如图所示:因为,所以.又因为为的角平分线,所以到,的距离相等,所以所以.(2)由(1)及余弦定理得:所以,又因为所以,所以又因为且,故所以,当且仅当即时取等号.所以面积的最大值为.【题目点拨】本题主要考查正余弦定理在解三角形中的应用,三角形面积公式的应用,以及利用基本不等式求最值,意在考查学生的转化能力和数学运算能力,属于中档题.19、(1);(2).【解题分析】

(1)由得到,又代入夹角公式,求出的值;(2)利用公式进行模的求值.【题目详解】(1)因为,所以,因为,因为,所以.(2).【题目点拨】本题考查数量积的运算及其变形运用,特别注意之间关系的运用与转化,考查基本运算能力.20、(1)(2)100【解题分析】

(1)由于每生产千件需另投人成本受产量的影响有变化,根据题意,所以分当时和当时,两种情况进行讨论,然后根据利润的定义写出解析式.(2)根据(1)的利润函数为,当时,用二次函数法求最大值;当时,用基本不等式求最大值.最后两段中取最大的为利润函数的最大值,相应的x的取值即为此时最大利润时的产量.【题目详解】(1)根据题意当时,,当时,,综上:.(2)由(1)知,当时,,当时,的最大值为950万.当时,,当且仅当即时取等号,的最大值为1000万.综上:当产量为100千件时,该厂当年的利润最大.【题目点拨】本题主要考查了分段函数的实际应用,还考查了建模,运算求解的能力,属于骠题.21、(1);(2)不是,证明见解析;(3)证明见解析.【解题分析】

(1)由,可得出,则数列为等比数列,然后利用等比数列的通项公式可间接求出;(2)假设数列为“等比源数列”,则此数列中存在三项成等比数列,可得出,展开后得出,然后利用数的奇偶性即可得出结论;(3)设等差数列的公差为,假设存在三项使得,展开得出,从而可得知,当,时,原命题成立.【题目详解】(1),得,即,且.所以,数列是以为首项,以为公比的等比数列,则,因此,;(2)数列不是“等比源数列”,下面用反证法来证明.假设数列是“等比源数列”,则存在三项、、,设.由于数列为单调递增的正项数列,则,所以.得,化简得,等式两边同时除以得,,且、、,则,,,,则为偶数,为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论