2024届江苏省高邮市数学高一第二学期期末监测模拟试题含解析_第1页
2024届江苏省高邮市数学高一第二学期期末监测模拟试题含解析_第2页
2024届江苏省高邮市数学高一第二学期期末监测模拟试题含解析_第3页
2024届江苏省高邮市数学高一第二学期期末监测模拟试题含解析_第4页
2024届江苏省高邮市数学高一第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省高邮市数学高一第二学期期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列的通项为,我们把使乘积为整数的叫做“优数”,则在内的所有“优数”的和为()A.1024 B.2012 C.2026 D.20362.已知点在第二象限,角顶点为坐标原点,始边为轴的非负半轴,则角的终边落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知等差数列中,则()A.10 B.16 C.20 D.244.过点且垂直于直线的直线方程为()A. B.C. D.5.的弧度数是()A. B. C. D.6.设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.7.在中,,则()A. B. C. D.8.函数的最小值为(

)A.6 B.7 C.8 D.99.已知满足:,则目标函数的最大值为()A.6 B.8 C.16 D.410.等差数列的首项为.公差不为,若成等比数列,则数列的前项和为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数是定义域为的偶函数.当时,,关于的方程,有且仅有5个不同实数根,则实数的取值范围是_____.12.函数y=sin2x+2sin2x的最小正周期T为_______.13.若角的终边经过点,则______.14.若直线上存在点可作圆的两条切线,切点为,且,则实数的取值范围为.15.某银行一年期定期储蓄年利率为2.25%,如果存款到期不取出继续留存于银行,银行自动将本金及80%的利息(利息须交纳20%利息税,由银行代交)自动转存一年期定期储蓄,某人以一年期定期储蓄存入银行20万元,则5年后,这笔钱款交纳利息税后的本利和为________元.(精确到1元)16.中,内角、、所对的边分别是、、,已知,且,,则的面积为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,,底面是矩形,侧面底面,是的中点.(1)求证:平面;(2)求证:平面.18.已知数列中,,.(1)求数列的通项公式;(2)求数列的前项和;(3)若对任意的,都有成立,求实数的取值范围.19.如图,在四棱锥中,底面是直角梯形,侧棱底面,垂直于和,为棱上的点,,.(1)若为棱的中点,求证://平面;(2)当时,求平面与平面所成的锐二面角的余弦值;(3)在第(2)问条件下,设点是线段上的动点,与平面所成的角为,求当取最大值时点的位置.20.已知等差数列满足,.(1)求的通项公式;(2)各项均为正数的等比数列中,,,求的前项和.21.在国内汽车市场中,国产SUV出现了持续不退的销售热潮,2018年国产SUV销量排行榜完整版已经出炉,某品牌车型以惊人的销量成绩击退了所有虎视眈眈的对手,再次霸气登顶,下面是该品牌国产SUV分别在2017年与2018年7~11月份的销售量对比表时间7月8月9月10月11月2017年(单位:万辆)2.83.93.54.45.42018年(单位:万辆)3.83.94.54.95.4(Ⅰ)若从7月至11月中任选两个月份,求至少有一个月份这两年该国产品牌SUV销量相同的概率.(Ⅱ)分别求这两年7月至11月的销售数据的平均数,并直接判断哪年的销售量比较稳定.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

根据优数的定义,结合对数运算,求得的范围,再用等比数列的前项和公式进行求和.【题目详解】根据优数的定义,令,则可得令,解得则在内的所有“优数”的和为:故选:C.【题目点拨】本题考查新定义问题,本质是考查对数的运算,等比数列前项和公式.2、C【解题分析】

根据点的位置,得到不等式组,进行判断角的终边落在的位置.【题目详解】点在第二象限在第三象限,故本题选C.【题目点拨】本题考查了通过角的正弦值和正切值的正负性,判断角的终边位置,利用三角函数的定义是解题的关键.3、C【解题分析】

根据等差数列性质得到,再计算得到答案.【题目详解】已知等差数列中,故答案选C【题目点拨】本题考查了等差数列的性质,是数列的常考题型.4、C【解题分析】

先求出直线的斜率,再求出所求直线的斜率,再利用直线的点斜式方程求解.【题目详解】由题得直线的斜率为,所以所求的直线的斜率为,所以所求的直线方程为即.故选:C【题目点拨】本题主要考查互相垂直直线的性质,考查直线方程的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.5、B【解题分析】

由角度与弧度的关系转化.【题目详解】-150.故选:B.【题目点拨】本题考查角度与弧度的互化,解题关键是掌握关系式:.6、A【解题分析】

∵∴−=3(−);∴=−.故选A.7、B【解题分析】

根据向量的三角形法则进行转化求解即可.【题目详解】∵,∴,又则故选:B【题目点拨】本题考查向量加减混合运算及其几何意义,灵活应用向量运算的三角形法则即可求解,属于基础题.8、C【解题分析】

直接利用均值不等式得到答案.【题目详解】,时等号成立.故答案选C【题目点拨】本题考查了均值不等式,属于简单题.9、D【解题分析】

作出不等式组对应的平面区域,数形结合,利用z的几何意义,即得。【题目详解】由题得,不等式组对应的平面区域如图,中z表示函数在y轴的截距,由图易得,当函数经过点A时z取到最大值,A点坐标为,因此目标函数的最大值为4.故选:D【题目点拨】本题考查线性规划,是基础题。10、A【解题分析】

根据等比中项定义可得;利用和表示出等式,可构造方程求得;利用等差数列求和公式求得结果.【题目详解】由题意得:设等差数列公差为,则即:,解得:本题正确选项:【题目点拨】本题考查等差数列基本量的计算,涉及到等比中项、等差数列前项和公式的应用;关键是能够构造方程求出公差,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解题分析】

令,则原方程为,根据原方程有且仅有5个不同实数根,则有5个不同的解,结合图像特征,求出的值或范围,即为方程解的值或范围,转化为范围,即可求解.【题目详解】令,则原方程为,当时,,且为偶函数,做出图像,如下图所示:当时,有一个解;当或,有两个解;当时,有四个解;当或时,无解.,有且仅有5个不同实数根,关于的方程有一个解为,,另一个解为,在区间上,所以,实数的取值范围是.故答案为:.【题目点拨】本题考查复合方程根的个数求参数范围,考查了分段函数的应用,利用换元法结合的函数的奇偶性的对称性,利用数形结合是解题的关键,属于难题.12、【解题分析】考点:此题主要考查三角函数的概念、化简、性质,考查运算能力.13、【解题分析】

利用三角函数的定义可计算出,然后利用诱导公式可计算出结果.【题目详解】由三角函数的定义可得,由诱导公式可得.故答案为:.【题目点拨】本题考查利用三角函数的定义和诱导公式求值,考查计算能力,属于基础题.14、【解题分析】试题分析:若,则,直线上存在点可作和的两条切线等价于直线与圆有公共点,由圆心到直线的距离公式可得,解之可得.考点:点到直线的距离公式及直线与圆的位置关系的运用.【方法点晴】本题主要考查了点到直线的距离公式及直线与圆的位置关系的运用,涉及到圆心到直线的距离公式和不等式的求解,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及学生的推理与运算能力,本题的解答中直线上存在点可作和的两条切线等价于直线与圆有公共点是解答的关键.15、218660【解题分析】

20万存款满一年到期后利息有200000×2.25%×(1-20%),本息和共200000×2.25%×(【题目详解】20万存款满一年到期后利息有200000×2.25%×(1-20%),本息和共200000×2.25%×(200000×(1.018)故填218660.【题目点拨】本题主要考查了银行存款的复利问题,由固定公式可用,本息和=本金×(1+利率×(1-16、【解题分析】

由正弦定理边角互化思想结合两角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面积公式可计算出的面积.【题目详解】,由边角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案为.【题目点拨】本题考查正弦定理边角互化思想的应用,考查利用余弦定理解三角形以及三角形面积公式的应用,解题时要结合三角形已知元素类型合理选择正弦、余弦定理解三角形,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解题分析】

(1)利用即可证明;(2)由面面垂直的性质即可证明.【题目详解】证明:(1)在四棱锥中,底面是矩形,,又平面,平面;平面;(2)侧面底面,侧面平面,,平面,平面【题目点拨】本题考查了空间线面平行、垂直的证明,属于基础题.18、(1)(2)(3)【解题分析】

(1)利用递推公式求出,,递推到当时,,两个式子相减,得到,进而求出数列的通项公式;(2)运用错位相减法可以求出数列的前项和;(3)对任意的,都有成立,转化为的最小值即可,利用商比的方法可以确定数列的单调性,最后求出实数的取值范围.【题目详解】(1)数列{an}中,,.可得时,,即,时,,又,两式相减可得,化为,可得,即,综上可得;(2),则前项和,,相减可得,化为;(3)对任意的,都有成立,即为的最小值,由可得,,可得时,递增,当或2时,取得最小值,则.【题目点拨】本题考查了已知递推公式求数列通项公式,考查了数列的单调性,考查了错位相减法,考查了数学运算能力.19、(1)见解析;(2);(3)即点N在线段CD上且【解题分析】

(1)取线段SC的中点E,连接ME,ED.可证是平行四边形,从而有,则可得线面平行;(2)以点A为坐标原点,建立分别以AD、AB、AS所在的直线为x轴、y轴、z轴建立空间直角坐标系,求出两平面与平面的法向量,由法向量夹角的余弦值可得二面角的余弦值;(3)设,其中,求出,由MN与平面所成角的正弦值为与平面的法向量夹角余弦值的绝对值可求得结论.【题目详解】(1)证明:取线段SC的中点E,连接ME,ED.在中,ME为中位线,∴且,∵且,∴且,∴四边形AMED为平行四边形.∴.∵平面SCD,平面SCD,∴平面SCD.(2)解:如图所示以点A为坐标原点,建立分别以AD、AB、AS所在的直线为x轴、y轴、z轴建立空间直角坐标系,则,,,,,由条件得M为线段SB近B点的三等分点.于是,即,设平面AMC的一个法向量为,则,将坐标代入并取,得.另外易知平面SAB的一个法向量为,所以平面AMC与平面SAB所成的锐二面角的余弦为.(3)设,其中.由于,所以.所以,可知当,即时分母有最小值,此时有最大值,此时,,即点N在线段CD上且.【题目点拨】本题考查线面平行的证明,考查求二面角与线面角.求空间角时,一般建立空间直角坐标系,由平面法向量的夹角求得二面角,由直线的方向向量与平面法向量的夹角与线面角互余可求得线面角.20、(1);(2).【解题分析】试题分析:(1)求{an}的通项公式,可先由a2=2,a5=8求出公差,再由an=a5+(n-5)d,求出通项公式;(2)设各项均为正数的等比数列的公比为q(q>0),利用等比数列的通项公式可求首项及公比q,代入等比数列的前n项和公式可求Tn.试题解析:(1)设等差数列{an}的公差为d,则由已知得∴a1=0,d=2.∴an=a1+(n-1)d=2n-2.(2)设等比数列{bn}的公比为q,则由已知得q+q2=a4,∵a4=6∴解得:q=2或q=-3.∵等比数列{bn}的各项均为正数,∴q=2.∴{bn}的前n项和Tn===21、(Ⅰ);(Ⅱ),,年销售量更稳定.【解题分析】

(Ⅰ)列举出所有可能的情况,在其中找到至少一个月份两年销量相同的情况,根据古典概型概率公式求得结果;(Ⅱ)根据平均数和方差的计算公式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论