云南省昆明市呈贡区第一中学2023-2024学年数学高三第一学期期末联考模拟试题含解析_第1页
云南省昆明市呈贡区第一中学2023-2024学年数学高三第一学期期末联考模拟试题含解析_第2页
云南省昆明市呈贡区第一中学2023-2024学年数学高三第一学期期末联考模拟试题含解析_第3页
云南省昆明市呈贡区第一中学2023-2024学年数学高三第一学期期末联考模拟试题含解析_第4页
云南省昆明市呈贡区第一中学2023-2024学年数学高三第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市呈贡区第一中学2023-2024学年数学高三第一学期期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数(为虚数单位),则的共轭复数的模为()A. B.4 C.2 D.2.已知函数,,若成立,则的最小值是()A. B. C. D.3.在区间上随机取一个数,使直线与圆相交的概率为()A. B. C. D.4.给出下列三个命题:①“”的否定;②在中,“”是“”的充要条件;③将函数的图象向左平移个单位长度,得到函数的图象.其中假命题的个数是()A.0 B.1 C.2 D.35.已知为虚数单位,复数满足,则复数在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.复数的模为().A. B.1 C.2 D.7.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为,,,且,则此三棱锥外接球表面积的最小值为()A. B. C. D.8.由曲线y=x2与曲线y2=x所围成的平面图形的面积为()A.1 B. C. D.9.若为虚数单位,则复数,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为()A.正相关,相关系数的值为B.负相关,相关系数的值为C.负相关,相关系数的值为D.正相关,相关负数的值为11.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为()A. B.2 C. D.12.如图,平面ABCD,ABCD为正方形,且,E,F分别是线段PA,CD的中点,则异面直线EF与BD所成角的余弦值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在平行四边形中,,,则的值为_____.14.若函数,则的值为______.15.已知,满足约束条件则的最小值为__________.16.已知矩形ABCD,AB=4,BC=3,以A,B为焦点,且过C,D两点的双曲线的离心率为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足对任意都有,其前项和为,且是与的等比中项,.(1)求数列的通项公式;(2)已知数列满足,,设数列的前项和为,求大于的最小的正整数的值.18.(12分)在直角坐标系中,直线的参数方程为(为参数),直线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)求的极坐标方程和的直角坐标方程;(Ⅱ)设分别交于两点(与原点不重合),求的最小值.19.(12分)已知,函数有最小值7.(1)求的值;(2)设,,求证:.20.(12分)已知各项均不相等的等差数列的前项和为,且成等比数列.(1)求数列的通项公式;(2)求数列的前项和.21.(12分)已知函数,曲线在点处的切线方程为.(1)求,的值;(2)证明函数存在唯一的极大值点,且.22.(10分)在①,②,③这三个条件中任选一个,补充在下面问题中,求的面积的值(或最大值).已知的内角,,所对的边分别为,,,三边,,与面积满足关系式:,且,求的面积的值(或最大值).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由复数的综合运算求出,再写出其共轭复数,然后由模的定义计算模.【详解】,.故选:D.【点睛】本题考查复数的运算,考查共轭复数与模的定义,属于基础题.2、A【解析】分析:设,则,把用表示,然后令,由导数求得的最小值.详解:设,则,,,∴,令,则,,∴是上的增函数,又,∴当时,,当时,,即在上单调递减,在上单调递增,是极小值也是最小值,,∴的最小值是.故选A.点睛:本题易错选B,利用导数法求函数的最值,解题时学生可能不会将其中求的最小值问题,通过构造新函数,转化为求函数的最小值问题,另外通过二次求导,确定函数的单调区间也很容易出错.3、C【解析】

根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.【详解】因为圆心,半径,直线与圆相交,所以,解得所以相交的概率,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.4、C【解析】

结合不等式、三角函数的性质,对三个命题逐个分析并判断其真假,即可选出答案.【详解】对于命题①,因为,所以“”是真命题,故其否定是假命题,即①是假命题;对于命题②,充分性:中,若,则,由余弦函数的单调性可知,,即,即可得到,即充分性成立;必要性:中,,若,结合余弦函数的单调性可知,,即,可得到,即必要性成立.故命题②正确;对于命题③,将函数的图象向左平移个单位长度,可得到的图象,即命题③是假命题.故假命题有①③.故选:C【点睛】本题考查了命题真假的判断,考查了余弦函数单调性的应用,考查了三角函数图象的平移变换,考查了学生的逻辑推理能力,属于基础题.5、B【解析】

求出复数,得出其对应点的坐标,确定所在象限.【详解】由题意,对应点坐标为,在第二象限.故选:B.【点睛】本题考查复数的几何意义,考查复数的除法运算,属于基础题.6、D【解析】

利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】解:,复数的模为.故选:D.【点睛】本题主要考查复数代数形式的乘除运算,考查复数模的求法,属于基础题.7、B【解析】

根据三视图得到几何体为一三棱锥,并以该三棱锥构造长方体,于是得到三棱锥的外接球即为长方体的外接球,进而得到外接球的半径,求得外接球的面积后可求出最小值.【详解】由已知条件及三视图得,此三棱锥的四个顶点位于长方体的四个顶点,即为三棱锥,且长方体的长、宽、高分别为,∴此三棱锥的外接球即为长方体的外接球,且球半径为,∴三棱锥外接球表面积为,∴当且仅当,时,三棱锥外接球的表面积取得最小值为.故选B.【点睛】(1)解决关于外接球的问题的关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用.(2)长方体的外接球的直径即为长方体的体对角线,对于一些比较特殊的三棱锥,在研究其外接球的问题时可考虑通过构造长方体,通过长方体的外球球来研究三棱锥的外接球的问题.8、B【解析】

首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可.【详解】联立方程:可得:,,结合定积分的几何意义可知曲线y=x2与曲线y2=x所围成的平面图形的面积为:.本题选择B选项.【点睛】本题主要考查定积分的概念与计算,属于中等题.9、B【解析】

首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.【详解】,,则在复平面内对应的点的坐标为,位于第二象限.故选:B【点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.10、C【解析】

根据正负相关的概念判断.【详解】由散点图知随着的增大而减小,因此是负相关.相关系数为负.故选:C.【点睛】本题考查变量的相关关系,考查正相关和负相关的区别.掌握正负相关的定义是解题基础.11、A【解析】

由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率.【详解】由题意∵,∴由双曲线定义得,从而得,,在中,由余弦定理得,化简得.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式.12、C【解析】

分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系,再利用向量法求异面直线EF与BD所成角的余弦值.【详解】由题可知,分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系.设.则.故异面直线EF与BD所成角的余弦值为.故选:C【点睛】本题主要考查空间向量和异面直线所成的角的向量求法,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据ABCD是平行四边形可得出,然后代入AB=2,AD=1即可求出的值.【详解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案为:﹣1.【点睛】本题考查了向量加法的平行四边形法则,相等向量和相反向量的定义,向量数量积的运算,考查了计算能力,属于基础题.14、【解析】

根据题意,由函数的解析式求出的值,进而计算可得答案.【详解】根据题意,函数,则,则;故答案为:.【点睛】本题考查分段函数的性质、对数运算法则的应用,考查函数与方程思想、转化与化归思想,考查运算求解能力.15、【解析】

画出可行域,通过平移基准直线到可行域边界位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知:可行域是由三点,,构成的三角形及其内部,当直线过点时,取得最小值.故答案为:【点睛】本小题主要考查利用线性规划求目标函数的最值,考查数形结合的数学思想方法,属于基础题.16、2【解析】

根据为焦点,得;又求得,从而得到离心率.【详解】为焦点在双曲线上,则又本题正确结果:【点睛】本题考查利用双曲线的定义求解双曲线的离心率问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)4【解析】

(1)利用判断是等差数列,利用求出,利用等比中项建立方程,求出公差可得.(2)利用的通项公式,求出,用错位相减法求出,最后建立不等式求出最小的正整数.【详解】解:任意都有,数列是等差数列,,又是与的等比中项,,设数列的公差为,且,则,解得,,;由题意可知,①,②,①﹣②得:,,,由得,,,,满足条件的最小的正整数的值为.【点睛】本题考查等差数列的通项公式和前项和公式及错位相减法求和.(1)解决等差数列通项的思路(1)在等差数列中,是最基本的两个量,一般可设出和,利用等差数列的通项公式和前项和公式列方程(组)求解即可.(2)错位相减法求和的方法:如果数列是等差数列,是等比数列,求数列的前项和时,可采用错位相减法,一般是和式两边同乘以等比数列的公比,然后作差求解;在写“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式18、(Ⅰ)直线的极坐标方程为,直线的极坐标方程为,的直角坐标方程为;(Ⅱ)2.【解析】

(Ⅰ)由定义可直接写出直线的极坐标方程,对曲线同乘可得:,转化成直角坐标为;(Ⅱ)分别联立两直线和曲线的方程,由得,由得,则,结合三角函数即可求解;【详解】(Ⅰ)直线的极坐标方程为,直线的极坐标方程为由曲线的极坐标方程得,所以的直角坐标方程为.(Ⅱ)与的极坐标方程联立得所以.与的极坐标方程联立得所以.所以.所以当时,取最小值2.【点睛】本题考查参数方程与极坐标方程的互化,极坐标方程与直角坐标方程的互化,极坐标中的几何意义,属于中档题19、(1).(2)见解析【解析】

(1)由绝对值三解不等式可得,所以当时,,即可求出参数的值;(2)由,可得,再利用基本不等式求出的最小值,即可得证;【详解】解:(1)∵,∴当时,,解得.(2)∵,∴,∴,当且仅当,即,时,等号成立.∴.【点睛】本题主要考查绝对值三角不等式及基本不等式的简单应用,属于中档题.20、(1);(2).【解析】试题分析:(1)设公差为,列出关于的方程组,求解的值,即可得到数列的通项公式;(2)由(1)可得,即可利用裂项相消求解数列的和.试题解析:(1)设公差为.由已知得,解得或(舍去),所以,故.(2),考点:等差数列的通项公式;数列的求和.21、(1)(2)证明见解析【解析】

(1)求导,可得(1),(1),结合已知切线方程即可求得,的值;(2)利用导数可得,,再构造新函数,利用导数求其最值即可得证.【详解】(1)函数的定义域为,,则(1),(1),故曲线在点,(1)处的切线方程为,又曲线在点,(1)处的切线方程为,,;(2)证明:由(1)知,,则,令,则,易知在单调递减,又,(1),故存在,使得,且当时,,单调递增,当,时,,单调递减,由于,(1),(2),故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论