版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届淮北市重点中学高一数学第二学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列满足,,则数列的前10项和为()A. B. C. D.2.设有直线m、n和平面、.下列四个命题中,正确的是()A.若m∥,n∥,则m∥nB.若m,n,m∥,n∥,则∥C.若,m,则mD.若,m,m,则m∥3.函数(且)的图像是下列图像中的()A. B.C. D.4.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件。为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A.9 B.10 C.12 D.135.函数的部分图象如图中实线所示,图中圆与的图象交于两点,且在轴上,则下列说法中正确的是A.函数的最小正周期是B.函数的图象关于点成中心对称C.函数在单调递增D.函数的图象向右平移后关于原点成中心对称6.直线与平行,则的值为()A. B.或 C.0 D.-2或07.在中,角所对的边分别为,若.且,则的值为()A. B.C. D.或8.在明朝程大位《算法统宗》中,有这样一首歌谣,叫浮屠增级歌:远看巍巍塔七层,红光点点倍加增;共灯三百八十一,请问层三几盏灯.这首古诗描述的浮屠,现称宝塔.本浮屠增级歌意思是:有一座7层宝塔,每层悬挂的红灯数是上一层的2倍,宝塔中共有灯381盏,问这个宝塔第3层灯的盏数有()A. B. C. D.9.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B. C. D.10.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是()A.3.5 B.3 C.-0.5 D.-3二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,且,则_______.12.点到直线的距离为________.13.直线与直线的交点为,则________.14.一个公司共有240名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知某部门有60名员工,那么从这一部门抽取的员工人数是.15.若,,,则M与N的大小关系为___________.16.如图是一个算法流程图.若输出的值为4,则输入的值为______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某算法框图如图所示.(1)求函数的解析式及的值;(2)若在区间内随机输入一个值,求输出的值小于0的概率.18.已知.(1)当时,解不等式;(2)若不等式的解集为,求实数的值.19.如图,在中,,点在边上,(1)求的度数;(2)求的长度.20.某小型企业甲产品生产的投入成本x(单位:万元)与产品销售收入y(单位:万元)存在较好的线性关系,下表记录了最近5次该产品的相关数据.x(万元)357911y(万元)810131722(1)求y关于x的线性回归方程;(2)根据(1)中的回归方程,判断该企业甲产品投入成本12万元的毛利率更大还是投入成本15万元的毛利率更大(毛利率)?相关公式:,.21.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)1:12:13:44:5
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
由判断出数列是等比数列,再求出,利用等比数列前项和公式求解即可.【题目详解】由,得,所以数列是以为公比的等比数列,又,所以,由等比数列前项和公式,.故选:C【题目点拨】本题主要考查等比数列的定义和等比数列前项和公式的应用,考查学生的计算能力,属于基础题.2、D【解题分析】
当两条直线同时与一个平面平行时,两条直线之间的关系不能确定,故A不正确,B选项再加上两条直线相交的条件,可以判断面与面平行,故B不正确,C选项再加上m垂直于两个平面的交线,得到线面垂直,故C不正确,D选项中由α⊥β,m⊥β,m,可得m∥α,故是正确命题,故选D3、C【解题分析】
将函数表示为分段函数的形式,由此确定函数图像.【题目详解】依题意,.由此判断出正确的选项为C.故选C.【题目点拨】本小题主要考查三角函数图像的识别,考查分段函数解析式的求法,考查同角三角函数的基本关系式,属于基础题.4、D【解题分析】试题分析::∵甲、乙、丙三个车间生产的产品件数分别是120,80,60,∴甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,丙车间生产产品所占的比例,因为样本中丙车间生产产品有3件,占总产品的,所以样本容量n=3÷=1.考点:分层抽样方法5、B【解题分析】
根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案.【题目详解】根据给定函数的图象,可得点的横坐标为,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,当时,,即函数的一个对称中心为,即函数的图象关于点成中心对称.故选B.【题目点拨】本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题.6、A【解题分析】
若直线与平行,则,解出a值后,验证两条直线是否重合,可得答案.【题目详解】若直线与平行,
则,
解得或,
又时,直线与表示同一条直线,
故,
故选A.本题考查的知识点是直线的一般式方程,直线的平行关系,正确理解直线平行的几何意义是解答的关键.7、D【解题分析】
首先根据余弦定理,得到或.再分别计算即可.【题目详解】因为,所以,即:,解得:或.当时,.当时,.所以或.故选:D【题目点拨】本题主要考查余弦定理解三角形,熟记公式为解题的关键,属于中档题.8、C【解题分析】
先根据等比数列的求和公式求出首项,再根据通项公式求解.【题目详解】从第1层到塔顶第7层,每层的灯数构成一个等比数列,公比为,前7项的和为381,则,得第一层,则第三层,故选【题目点拨】本题考查等比数列的应用,关键在于理解题意.9、B【解题分析】由三视图可知,该几何体是一个棱长为的正方体挖去一个圆锥的组合体,正方体体积为,圆锥体积为几何体的体积为,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.10、D【解题分析】
因为错将其中一个数据105输入为15,所以此时求出的数比实际的数差是,因此平均数之间的差是.故答案为D二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
先由向量共线,求出,再由向量模的坐标表示,即可得出结果.【题目详解】因为,且,所以,解得,所以,因此.故答案为【题目点拨】本题主要考查求向量的模,熟记向量共线的坐标表示,以及向量模的坐标表示即可,属于基础题型.12、3【解题分析】
根据点到直线的距离公式,代值求解即可.【题目详解】根据点到直线的距离公式,点到直线的距离为.故答案为:3.【题目点拨】本题考查点到直线的距离公式,属基础题.13、【解题分析】
(2,2)为直线和直线的交点,即点(2,2)在两条直线上,分别代入直线方程,即可求出a,b的值,进而得a+b的值。【题目详解】因为直线与直线的交点为,所以,,即,,故.【题目点拨】本题考查求直线方程中的参数,属于基础题。14、5【解题分析】设一部门抽取的员工人数为x,则.15、【解题分析】
根据自变量的取值范围,利用作差法即可比较大小.【题目详解】,,,所以当时,所以,即,故答案为:.【题目点拨】本题考查了作差法比较整式的大小,属于基础题.16、-1【解题分析】
对的范围分类,利用流程图列方程即可得解.【题目详解】当时,由流程图得:令,解得:,满足题意.当时,由流程图得:令,解得:,不满足题意.故输入的值为:【题目点拨】本题主要考查了流程图知识,考查分类思想及方程思想,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)从程序框图可提炼出分段函数的函数表达式,从而计算得到的值;(2)此题为几何概型,分类讨论得到满足条件下的函数x值,从而求得结果.【题目详解】(1)由算法框图得:当时,,当时,,当时,,,(2)当时,,当时,由得故所求概率为【题目点拨】本题主要考查分段函数的应用,算法框图的理解,意在考查学生分析问题的能力.18、(1);(2)【解题分析】
(1)根据求解一元二次不等式的方法直接求解;(2)根据一元二次不等式的解就是对应一元二次方程的根这一特点列方程求解.【题目详解】解:(1),解得.∴不等式的解集为.(2)∵的解集为,∴方程的两根为0,3,∴解得∴,的值分别为3,1.【题目点拨】(1)对于形如的一元二次不等式,解集对应的形式是:“两根之内”;若是,解集对应的形式是:“两根之外”;(2)一元二次不等式解集的两个端点值,是一元二次方程的两个解同时也是二次函数图象与轴交点的横坐标.19、(1)(2)【解题分析】
(1)中直接由余弦定理可得,然后得到的度数;(2)由(1)知,在中,由正弦定理可直接得到的值.【题目详解】解:(1)在中,,,由余弦定理,有,在中,;(2)由(1)知,在中,由正弦定理,有,.【题目点拨】本题主要考查正弦定理和余弦定理的应用,考查了计算能力,属于基础题.20、(1);(2)12万元的毛利率更大【解题分析】
(1)根据题意代入数值分别算出与即可得解;(2)分别把与代入线性回归方程算出再算出毛利率即可得解.【题目详解】(1)由题意,.,,,故y关于x的线性回归方程为.(2)当时,,对应的毛利率为,当时,,对应的毛利率为,故投入成本12万元的毛利率更大.【题目点拨】本题考查了线性回归方程的求解和应用,考查了计算能力,属于基础题.21、(1)0.005;(2)平均分为73,众数为65,中位数为;(3)10【解题分析】
(1)根据频率之和为1,直接列式计算即可;(2)平均数等于每组的中间值乘以该组频率,再求和;众数指频率最大的一组的中间值;中位数两端的小长方形面积之和均为0.5;(3)根据题意分别求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肠道健康消费趋势研究报告
- 白城乳化管道安装施工方案
- 炒菜机器人 研究报告
- 潮流趋势调查研究报告
- 潮汕青菜文化研究报告
- 五年级数学(小数乘法)计算题专项练习及答案汇编
- 潮州钢结构泳池施工方案
- 潮州人才入户问题研究报告
- 测绘技术服务方案
- 2021年消防设施操作员基础知识题库(含答案)
- 心肌梗死后综合征
- 《彩虹》教案 省赛一等奖
- FLUENT6.3使用说明及例题
- 街道火灾事故检讨
- 最新班组安全管理安全生产标准化培训课件
- 《一粒种子成长过程》的课件
- 学好语文贵在三个“多”:多读、多背、多写-浅谈语文学法指导
- 助人为乐-主题班会(课件)
- 麻醉科护师晋升副主任医师高级职称专题报告病例分析(麻醉诱导后喉痉挛急救与护理)
- 关键装置、重点部位
- 安全文明施工措施费用检查表
评论
0/150
提交评论