2024届山东省临沂市沂南县数学高一下期末考试试题含解析_第1页
2024届山东省临沂市沂南县数学高一下期末考试试题含解析_第2页
2024届山东省临沂市沂南县数学高一下期末考试试题含解析_第3页
2024届山东省临沂市沂南县数学高一下期末考试试题含解析_第4页
2024届山东省临沂市沂南县数学高一下期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省临沂市沂南县数学高一下期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知各个顶点都在同一球面上的正方体的棱长为2,则这个球的表面积为()A. B. C. D.2.正四棱柱的高为3cm,体对角线长为cm,则正四棱柱的侧面积为()A.10 B.24 C.36 D.403.已知点、、在圆上运动,且,若点的坐标为,的最大值为()A. B. C. D.4.已知是不共线的非零向量,,,,则四边形是()A.梯形 B.平行四边形 C.矩形 D.菱形5.函数的定义域为()A. B. C. D.6.设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是()A.①和② B.②和③ C.③和④ D.①和④7.平面内任一向量都可以表示成的形式,下列关于向量的说法中正确的是()A.向量的方向相同 B.向量中至少有一个是零向量C.向量的方向相反 D.当且仅当时,8.已知数列为等比数列,且,则()A. B. C. D.9.已知点在正所确定的平面上,且满足,则的面积与的面积之比为()A. B. C. D.10.下列命题正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱.B.有两个面平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.C.绕直角三角形的一边旋转所形成的几何体叫圆锥.D.用一个面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.二、填空题:本大题共6小题,每小题5分,共30分。11.设,,则______.12.如果,,则的值为________(用分数形式表示)13.记等差数列的前项和为,若,则________.14.___________.15.如图是一正方体的表面展开图.、、都是所在棱的中点.则在原正方体中:①与异面;②平面;③平面平面;④与平面形成的线面角的正弦值是;⑤二面角的余弦值为.其中真命题的序号是______.16.若点为圆的弦的中点,则弦所在的直线的方程为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,判断并证明函数的奇偶性;(2)当时,判断并证明函数在上的单调性.18.已知函数的最小正周期为,且该函数图象上的最低点的纵坐标为.(1)求函数的解析式;(2)求函数的单调递增区间及对称轴方程.19.已知,其中,求:(1);;(2)与的夹角的余弦值.20.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;21.在锐角中,角,,所对的边分别为,,.已知,.(1)求的值;(2)若,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

先求出外接球的半径,再求球的表面积得解.【题目详解】由题得正方体的对角线长为,所以.故选A【题目点拨】本题主要考查多面体的外接球问题和球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.2、B【解题分析】

设正四棱柱,设底面边长为,由正四棱柱体对角线的平方等于从同一顶点出发的三条棱的平方和,可得关于的方程.【题目详解】如图,正四棱柱,设底面边长为,则,解得:,所以正四棱柱的侧面积.【题目点拨】本题考查正棱柱的概念,即底面为正方形且侧棱垂直于底面的几何体,考查几何体的侧面积计算.3、C【解题分析】

由题意可知为圆的一条直径,由平面向量加法的平行四边形法则可得(为坐标原点),然后利用平面向量模的三角不等式以及圆的几何性质可得出的最大值.【题目详解】如下图所示:,为圆的一条直径,由平面向量加法的平行四边形法则可得(为坐标原点),由平面向量模的三角不等式可得,当且仅当点的坐标为时,等号成立,因此,的最大值为.故选:C.【题目点拨】本题考查向量模的最值问题,涉及平面向量模的三角不等式以及圆的几何性质的应用,考查数形结合思想的应用,属于中等题.4、A【解题分析】

本题首先可以根据向量的运算得出,然后根据以及向量平行的相关性质即可得出四边形的形状.【题目详解】因为,所以,因为,是不共线的非零向量,所以且,所以四边形是梯形,故选A.【题目点拨】本题考查根据向量的相关性质来判断四边形的形状,考查向量的运算以及向量平行的相关性质,如果一组对边平行且不相等,那么四边形是梯形;如果对边平行且相等,那么四边形是平行四边形;相邻两边长度相等的平行四边形是菱形;相邻两边垂直的平行四边形是矩形,是简单题.5、A【解题分析】

根据对数函数的定义域直接求解即可.【题目详解】由题知函数,所以,所以函数的定义域是.故选:A.【题目点拨】本题考查了对数函数的定义域的求解,属于基础题.6、A【解题分析】

根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【题目详解】解:对于①,因为,所以经过作平面,使,可得,又因为,,所以,结合得.由此可得①是真命题;对于②,因为且,所以,结合,可得,故②是真命题;对于③,设直线、是位于正方体上底面所在平面内的相交直线,而平面是正方体下底面所在的平面,则有且成立,但不能推出,故③不正确;对于④,设平面、、是位于正方体经过同一个顶点的三个面,则有且,但是,推不出,故④不正确.综上所述,其中正确命题的序号是①和②故选:【题目点拨】本题给出关于空间线面位置关系的命题,要我们找出其中的真命题,着重考查了线面平行、面面平行的性质和线面垂直、面面垂直的判定与性质等知识,属于中档题.7、D【解题分析】

根据平面向量的基本定理,若平面内任一向量都可以表示成的形式,构成一个基底,所以向量不共线.【题目详解】因为任一向量,根据平面向理的基本定理得,所以向量不共线,故A,C不正确.是一个基底,所以不能为零向量,故B不正确.因为不共线,且不能为零向量,所以若,当且仅当,故D正确.故选:D【题目点拨】本题主要考查平面向量的基本定理,还考查了理解辨析的能力,属于基础题.8、A【解题分析】

根据等比数列性质知:,得到答案.【题目详解】已知数列为等比数列故答案选A【题目点拨】本题考查了等比数列的性质,属于简单题.9、C【解题分析】

根据向量满足的条件确定出P点的位置,再根据三角形有相同的底边,确定高的比即可求出结果.【题目详解】因为,所以,即点在边上,且,所以点到的距离等于点到距离的,故的面积与的面积之比为.选C.【题目点拨】本题主要考查了向量的线性运算,三角形的面积,属于中档题.10、B【解题分析】

根据课本中的相关概念依次判断选项即可.【题目详解】对于A选项,几何体可以是棱台,满足有两个面平行,其余各面都是四边形,故选项不正确;对于B,根据课本中棱柱的概念得到是正确的;对于C,当绕直角三角形的斜边旋转时构成的几何体不是圆锥,故不正确;对于D,用平行于底面的平面截圆锥得到的剩余的几何体是棱台,故不正确.故答案为B.【题目点拨】这个题目考查了几何体的基本概念,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由,根据两角差的正切公式可解得.【题目详解】,故答案为【题目点拨】本题主要考查了两角差的正切公式的应用,属于基础知识的考查.12、【解题分析】

先求出,可得,再代值计算即可.【题目详解】.故答案为:【题目点拨】本题考查了等差数列的前项和公式、累乘相消法,考查了学生的计算能力,属于基础题.13、10【解题分析】

由等差数列求和的性质可得,求得,再利用性质可得结果.【题目详解】因为,所以,所以,故故答案为10【题目点拨】本题考查了等差数列的性质,熟悉其性质是解题的关键,属于基础题.14、【解题分析】

先将写成的形式,再根据诱导公式进行求解.【题目详解】由题意得:.故答案为:.【题目点拨】考查三角函数的诱导公式.,,,,.15、①②④【解题分析】

将正方体的表面展开图还原成正方体,利用正方体中线线、线面以及面面关系,以及直线与平面所成角的定义和二面角的定义进行判断.【题目详解】根据条件将正方体进行还原如下图所示:对于命题①,由图形可知,直线与异面,命题①正确;对于命题②,、分别为所在棱的中点,易证四边形为平行四边形,所以,,平面,平面,平面,命题②正确;对于命题③,在正方体中,平面,由于四边形为平行四边形,,平面.、平面,,.则二面角所成的角为,显然不是直角,则平面与平面不垂直,命题③错误;对于命题④,设正方体的棱长为,易知平面,则与平面所成的角为,由勾股定理可得,,在中,,即直线与平面所成线面角的正弦值为,命题④正确;对于命题⑤,在正方体中,平面,且,平面.、平面,,,所以,二面角的平面角为,在中,由勾股定理得,,由余弦定理得,命题⑤错误.故答案为①②④.【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面关系的判断以及线面角、二面角的计算,判断时要从空间中有关线线、线面、面面关系的平行或垂直的判定或性质定理出发进行推导,在计算空间角时,则应利用空间角的定义来求解,考查推理能力与运算求解能力,属于中等题.16、;【解题分析】

利用垂径定理,即圆心与弦中点连线垂直于弦.【题目详解】圆标准方程为,圆心为,,∵是中点,∴,即,∴的方程为,即.故答案为.【题目点拨】本题考查垂径定理.圆中弦问题,常常要用垂径定理,如弦长(其中为圆心到弦所在直线的距离).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解题分析】

(1)将代入函数的解析式,利用函数的奇偶性定义来证明出函数的奇偶性;(2)将函数的解析式化为,然后利用函数单调性的定义证明出函数在上的单调性.【题目详解】(1)当时,,函数为上的奇函数.证明如下:,其定义域为,则,故函数为奇函数;(2)当时,函数在上单调递减.证明如下:,任取,则,又由,则,则有,即.因此,函数为上的减函数.【题目点拨】本题考查函数单调性与奇偶性的判定与证明,在利用定义证明函数的单调性与奇偶性时,要熟悉定义法证明函数奇偶性与单调性的基本步骤,考查逻辑推理能力与计算能力,属于中等题.18、(1);(2)增区间是,对称轴为【解题分析】

(1)由周期求得ω,再由函数图象上的最低点的纵坐标为﹣3求得A,则函数解析式可求;(2)直接利用复合函数的单调性求函数f(x)的单调递增区间,再由2x求解x可得函数f(x)的对称轴方程.【题目详解】(1)因为的最小正周期为因为,,,∴.又函数图象上的最低点纵坐标为,且∴∴.(2)由,可得可得单调递增区间.由,得.所以函数的对称轴方程为.【题目点拨】本题考查函数解析式的求法,考查y=Asin(ωx+φ)型函数的性质,是基础题.19、(1)10;(2)【解题分析】试题分析:(1)本题考察的是平面向量的数量积和向量的模.先根据是相互垂直的单位向量表示出要用的两个向量,然后根据向量的数量积运算和向量模的运算即可求出答案.(2)本题考察的是平面向量的夹角余弦值,可以通过向量的数量积公式表示出夹角的余弦值.先求出向量的模长,然后根据(1)求出的的数量积代入公式,即可求出答案.试题解析:(1),.∴|.(2)考点:平面向量数量积的坐标表示、模和夹角.20、(Ⅰ)0.4;(Ⅱ)20.【解题分析】

(1)首先可以根据频率分布直方图得出样本中分数不小于的频率,然后算出样本中分数小于的频率,最后计算出分数小于的概率;(2)首先计算出样本中分数不小于的频率,然后计算出分数在区间内的人数,最后计算出总体中分数在区间内的人数。【题目详解】(1)根据频率分布直方图可知,样本中分数不小于的频率为,所以样本中分数小于的频率为.所以从总体的名学生中随机抽取一人,其分数小于的概

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论