![西藏拉萨那曲二中2024届数学高一下期末考试试题含解析_第1页](http://file4.renrendoc.com/view11/M02/1F/2C/wKhkGWWiwLeAP2QDAAH5vrxTEBw672.jpg)
![西藏拉萨那曲二中2024届数学高一下期末考试试题含解析_第2页](http://file4.renrendoc.com/view11/M02/1F/2C/wKhkGWWiwLeAP2QDAAH5vrxTEBw6722.jpg)
![西藏拉萨那曲二中2024届数学高一下期末考试试题含解析_第3页](http://file4.renrendoc.com/view11/M02/1F/2C/wKhkGWWiwLeAP2QDAAH5vrxTEBw6723.jpg)
![西藏拉萨那曲二中2024届数学高一下期末考试试题含解析_第4页](http://file4.renrendoc.com/view11/M02/1F/2C/wKhkGWWiwLeAP2QDAAH5vrxTEBw6724.jpg)
![西藏拉萨那曲二中2024届数学高一下期末考试试题含解析_第5页](http://file4.renrendoc.com/view11/M02/1F/2C/wKhkGWWiwLeAP2QDAAH5vrxTEBw6725.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西藏拉萨那曲二中2024届数学高一下期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.正六边形的边长为,以顶点为起点,其他顶点为终点的向量分别为;以顶点为起点,其他顶点为终点的向量分别为.若分别为的最小值、最大值,其中,则下列对的描述正确的是()A. B. C. D.2.已知正方体中,、分别为,的中点,则异面直线和所成角的余弦值为()A. B. C. D.3.已知数列的前n项和为,且满足,则()A.1 B. C. D.20164.连续两次抛掷一枚质地均匀的硬币,出现正面向上与反面向上各一次的概率是(
)A. B. C. D.5.不等式x+5(x-1)A.[-3,1C.[126.若向量,且,则等于()A. B. C. D.7.已知直线,,若,则的值为()A.或 B. C. D.8.在区间上随机地取一个数.则的值介于0到之间的概率为().A. B. C. D.9.已知,且,则的最小值为()A.8 B.12 C.16 D.2010.在中,角A,B,C的对边分别为a,b,c.若,则一定是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰或直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.若是三角形的内角,且,则等于_____________.12.数列满足,则的前60项和为_____.13.在中,为边中点,且,,则______.14.已知,则______.15.方程的解集是__________.16.已知点及其关于原点的对称点均在不等式表示的平面区域内,则实数的取值范围是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,直线,.(1)直线是否过定点?若过定点,求出该定点坐标,若不过定点,请说明理由;(2)已知点,若直线上存在点满足条件,求实数的取值范围.18.设函数f(x)=x(1)当a=2时,函数f(x)的图像经过点(1,a+1),试求m的值,并写出(不必证明)f(x)的单调递减区间;(2)设a=-1,h(x)+x⋅f(x)=0,g(x)=2cos(x-π3),若对于任意的s∈[1,2],总存在t∈[0,π]19.已知函数.(1)求的单调增区间;(2)当时,求的最大值、最小值.20.已知不等式的解集为或.(1)求实数a,b的值;(2)解不等式.21.已知.(1)求;(2)求向量与的夹角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而得到结论.【题目详解】由题意,以顶点A为起点,其他顶点为终点的向量分别为,以顶点D为起点,其他顶点为终点的向量分别为,则利用向量的数量积公式,可知只有,其余数量积均小于等于0,又因为分别为的最小值、最大值,所以,故选A.【题目点拨】本题主要考查了向量的数量积运算,其中解答中熟记向量的数量积的运算公式,分析出向量数量积的正负是关键,着重考查了分析解决问题的能力,属于中档试题.2、A【解题分析】
连接,则,所以为所求的角.【题目详解】连结,,因为、分别为,的中点,所以,则为所求的角,设正方体棱长为1,则,,,三角形AD1B为直角三角形,,选择A【题目点拨】本题主要考查了异面直线所成的夹角;求异面直线的夹角,通常把其中一条直线平移到和另外一条直线相交即得异面直线所成的角.属于中等题.3、C【解题分析】
利用和关系得到数列通项公式,代入数据得到答案.【题目详解】已知数列的前n项和为,且满足,相减:取答案选C【题目点拨】本题考查了和关系,数列的通项公式,意在考查学生的计算能力.4、C【解题分析】
利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解.【题目详解】由题意,连续两次抛掷一枚质地均匀的硬币,基本事件包含:(正面,正面),(正面,反面),(反面,正面),(反面,反面),共有4中情况,出现正面向上与反面向上各一次,包含基本事件:(正面,反面),(反面,正面),共2种,所以的概率为,故选C.【题目点拨】本题主要考查了古典概型及其概率的计算问题,其中解答中熟练利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5、D【解题分析】试题分析:x+5(x-1)2≥2⇔x+5≥2(x-1)2且x≠1考点:分式不等式解法6、B【解题分析】
根据坐标形式下向量的平行对应的等量关系,即可计算出的值,再根据坐标形式下向量的加法即可求解出的坐标表示.【题目详解】因为且,所以,所以,所以.故选:B.【题目点拨】本题考查根据坐标形式下向量的平行求解参数以及向量加法的坐标运算,难度较易.已知,若则有.7、B【解题分析】
由两直线平行的等价条件列等式求出实数的值.【题目详解】,则,整理得,解得,故选:B.【题目点拨】本题考查利用两直线平行求参数的值,解题时要利用直线平行的等价条件列等式求解,一般是转化为斜率相等来求解,考查运算求解能力,属于基础题.8、D【解题分析】
由,得.由函数的图像知,使的值介于0到之间的落在和之内.于是,所求概率为.故答案为D9、C【解题分析】
由题意可得,则,展开后利用基本不等式,即可求出结果.【题目详解】因为,且,即为,则,当且仅当,即取得等号,则的最小值为.故选:C.【题目点拨】本题考查基本不等式的应用,注意等号成立的条件,考查运算能力,属于中档题.10、D【解题分析】
根据正弦定理得到,计算得到答案.【题目详解】,则,即.故或,即.故选:.【题目点拨】本题考查了根据正弦定理判断三角形形状,意在考查学生的应用能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】∵是三角形的内角,且,∴故答案为点睛:本题是一道易错题,在上,,分两种情况:若,则;若,则有两种情况锐角或钝角.12、1830【解题分析】
由题意可得,,,,,,…,,变形可得,,,,,,,,…,利用数列的结构特征,求出的前60项和.【题目详解】解:,∴,,,,,,…,,∴,,,,,,,,…,从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列,的前60项和为,故答案为:.【题目点拨】本题主要考查递推公式的应用,考查利用构造等差数列求数列的前项和,属于中档题.13、0【解题分析】
根据向量,,取模平方相减得到答案.【题目详解】两个等式平方相减得到:故答案为0【题目点拨】本题考查了向量的加减,模长,意在考查学生的计算能力.14、【解题分析】
利用同角三角函数的基本关系将弦化切,再代入计算可得.【题目详解】解:,故答案为:【题目点拨】本题考查同角三角函数的基本关系,齐次式的计算,属于基础题.15、【解题分析】
令,,将原方程化为关于的一元二次方程,解出得到,进而得出方程的解集.【题目详解】令,,故原方程可化为,解得或,故而或,即方程的解集是,故答案为.【题目点拨】本题主要考查了指数方程的解法,转化为一元二次方程是解题的关键,属于基础题.16、【解题分析】
根据题意,设与关于原点的对称,分析可得的坐标,由二元一次不等式的几何意义可得,解可得的取值范围,即可得答案.【题目详解】根据题意,设与关于原点的对称,则的坐标为,若、均在不等式表示的平面区域内,则有,解可得:,即的取值范围为,;故答案为,.【题目点拨】本题考查二元一次不等式表示平面区域的问题,涉及不等式的解法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)过定点,定点坐标为;(2)或.【解题分析】
(1)假设直线过定点,则关于恒成立,利用即可结果;(2)直线上存在点,求得,故点在以为圆心,2为半径的圆上,根据题意,该圆和直线有交点,即圆心到直线的距离小于或等于半径,由此求得实数的取值范围.【题目详解】(1)假设直线过定点,则,即关于恒成立,∴,∴,所以直线过定点,定点坐标为(2)已知点,,设点,则,,∵,∴,∴所以点的轨迹方程为圆,又点在直线:上,所以直线:与圆有公共点,设圆心到直线的距离为,则,解得实数的范围为或.【题目点拨】本题主要考查直线过定点问题以及直线与圆的位置关系,属于中档题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系;二是直线方程与圆的方程联立,考虑运用韦达定理以及判别式来解答.18、(1)递减区间为[-2,0)和(0,2【解题分析】
(1)将点(1,3)代入函数f(x)即可求出m,根据函数的解析式写出单调递减区间即可(2)当a=-1时,写出函数h(x),由题意知h(s)的值域是g(t)值域的子集,即可求出.【题目详解】(1)因为函数f(x)的图像经过点(1,a+1),且a=2所以f(1)=1+m+2=3,解得m=0.∴ ∴f(x)的单调递减区间为[-2,0)(2)当a=-1时,f(x)=x-1∴ ∵g(x)=2cos∴ t∈[0,π]时,g(t)∈[-1,2]由对于任意的s∈[1,2],总存在t∈[0,π],使得h(s)=g(t)知:h(s)的值域是g(t)值域的子集.因为h(x)=-x2-mx+1①当-m2≤1只需满足h(1)=-m≤2h(2)=-3-2m≥-1解得-2≤m≤-1.②当1<-m2<2因为h(1)=-m>2,与h(s)⊆[-1,2]矛盾,故舍去.③当-m2≥2h(1)=-m≥4与h(s)⊆[-1,2]矛盾,故舍去.综上,m∈[-2,-1].【题目点拨】本题主要考查了函数的单调性,以及含参数二次函数值域的求法,涉及存在性问题,转化思想和分类讨论思想要求较高,属于难题.19、(1),(2)【解题分析】
(1)首先利用三角函数恒等变换将化简为,再求其单调增区间即可.(2)根据,求出,再求的最值即可.【题目详解】(1),.的单调增区间为.(2)因为,所以.所以.当时,,当时,.【题目点拨】本题主要考查三角函数恒等变换的应用,同时考查三角函数的单调区间和最值,熟练掌握三角函数的公式为解题的关键,属于中档题.20、(1);(2)答案不唯一,见解析【解题分析】
(1)题意说明是方程的解,代入可得,把代入可求得原不等式的解集,从而得值;(2)因式分解后讨论和6的大小可得不等式的解集.【题目详解】(1)依题意,得:,解得,所以,不等式为,解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办公室翻新补贴合同协议书
- 智能机器人研发与销售合作合同
- 中秋月饼购销合同书
- 无人机技术开发与应用作业指导书
- 农业休闲旅游与三农深度融合策略研究
- 化妆品买卖合同
- 房屋买卖合同协议书
- 个人地皮转让协议书
- 人力资源管理关键步骤指导书
- 国际贸易进口合同履行流程
- Meta分析的步骤与实例分析
- 城市区域环境噪声监测实验报告
- 芯片可靠性分析
- MBTI量表完整版本
- 中医适宜技术-腕踝针
- 初二上劳动技术课件电子版
- 创业计划书模板-创业计划书-商业计划书模板-项目计划书模板-商业计划书30
- 2023年贵州省毕节市中考物理试题(原卷+解析版)真题含答案
- 四川虹科创新科技有限公司高强超薄耐摔玻璃智能制造产业化项目环境影响报告
- 口腔种植技术临床应用能力评估报告范本
- 烛之武退秦师 全市一等奖
评论
0/150
提交评论