版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江哈尔滨市第十九中学数学高一下期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在锐角中,内角,,所对的边分别为,,,若的面积为,且,则的周长的取值范围是A. B.C. D.2.若,则下列结论成立的是()A. B.C.的最小值为2 D.3.一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.4.已知点,则向量()A. B. C. D.5.已知是圆上的三点,()A. B. C. D.6.已知,且,那么a,b,,的大小关系是()A. B.C. D.7.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.8.已知下列各命题:①两两相交且不共点的三条直线确定一个平面:②若真线不平行于平面,则直线与平面有公共点:③若两个平面垂直,则一个平面内的已知直线必垂直于另一个平面的无数条直线:④若两个二面角的两个面分别对应垂直,则这两个二面角相等或互补.则其中正确的命题共有()个A. B. C. D.9.不等式的解集为()A.(-4,1) B.(-1,4)C.(-∞,-4)∪(1,+∞) D.(-∞,-1)∪(4,+∞)10.已知实数满足,则的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数f(x)=coscos的最小正周期为________.12.函数的最大值为,最小值为,则的最小正周期为______.13.已知向量a=(3,2),b=(0,-1),那么向量3b-a的坐标是.14.已知两点A(2,1)、B(1,1+)满足=(sinα,cosβ),α,β∈(﹣,),则α+β=_______________15.在等比数列中,已知,则=________________.16.如图,圆锥形容器的高为圆锥内水面的高为,且,若将圆锥形容器倒置,水面高为,则等于__________.(用含有的代数式表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,它的部分图象如图所示.(1)求函数的解析式;(2)当时,求函数的值域.18.已知扇形的面积为,弧长为,设其圆心角为(1)求的弧度;(2)求的值.19.在中,分别是角的对边,.(1)求的值;(2)若的面积,,求的值.20.如图,在三棱柱中,是边长为4的正三角形,侧面是矩形,分别是线段的中点.(1)求证:平面;(2)若平面平面,,求三棱锥的体积.21.设递增数列共有项,定义集合,将集合中的数按从小到大排列得到数列;(1)若数列共有4项,分别为,,,,写出数列的各项的值;(2)设是公比为2的等比数列,且,若数列的所有项的和为4088,求和的值;(3)若,求证:为等差数列的充要条件是数列恰有7项;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
首先根据面积公式和余弦定理可将已知变形为,,然后根据正弦定理,将转化为,利用,化简为,再根据三角形是锐角三角形,得到的范围,转化为三角函数求取值范围的问题.【题目详解】因为的面积为,所以,所以,由余弦定理可得,则,即,所以.由正弦定理可得,所以.因为为锐角三角形,所以,所以,则,即.故的周长的取值范围是.【题目点拨】本题考查了正余弦定理和三角形面积公式,以及辅助角公式和三角函数求取值范围的问题,属于中档题型,本题需认真审题,当是锐角三角形时,需满足三个角都是锐角,即.2、D【解题分析】
由,根据不等式乘方性质可判断A不成立;由指数函数单调性可判断B不成立;由基本不等式可判断C不成立,D成立.【题目详解】对于A,若,则有,故A不成立;对于B,根据指数函数单调性,函数单调递减,,故B不成立;对于C,由基本不等式,a=b取得最小值,由不能取得最小值,故C不成立;则D能成立.故选:D.【题目点拨】本题考查基本不等式、不等式的基本性质,考查不等式性质的应用,属于基础题.3、D【解题分析】
由几何体的三视图得该几何体是一个底面半径,高的扣在平面上的半圆柱,由此能求出该几何体的体积【题目详解】由几何体的三视图得:
该几何体是一个底面半径,高的放在平面上的半圆柱,如图,
故该几何体的体积为:故选:D【题目点拨】本题考查几何体的体积的求法,考查几何体的三视图等基础知识,考查推理能力与计算能力,是中档题.4、D【解题分析】
利用终点的坐标减去起点的坐标,即可得到向量的坐标.【题目详解】∵点,,∴向量,,.故选:D.【题目点拨】本题考查向量的坐标表示,考查运算求解能力,属于基础题.5、C【解题分析】
先由等式,得出,并计算出,以及与的夹角为,然后利用平面向量数量积的定义可计算出的值.【题目详解】由于是圆上的三点,,则,,故选C.【题目点拨】本题考查平面向量的数量积的计算,解题的关键就是要确定向量的模和夹角,考查计算能力,属于中等题.6、D【解题分析】
直接用作差法比较它们的大小得解.【题目详解】;;.故.故选:D【题目点拨】本题主要考查了作差法比较实数的大小,意在考查学生对这些知识的理解掌握水平,属于基础题.7、C【解题分析】
本题首先可以根据直角三角形的三边长求出三角形的内切圆半径,然后分别计算出内切圆和三角形的面积,最后通过几何概型的概率计算公式即可得出答案.【题目详解】如图所示,直角三角形的斜边长为,设内切圆的半径为,则,解得.所以内切圆的面积为,所以豆子落在内切圆外部的概率,故选C.【题目点拨】本题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.8、B【解题分析】
①利用平面的基本性质判断.②利用直线与平面的位置关系判断.③由面面垂直的性质定理判断.④通过举反例来判断.【题目详解】①两两相交且不共点,形成三个不共线的点,确定一个平面,故正确.②若真线不平行于平面,则直线与平面相交或在平面内,所以有公共点,故正确.③若两个平面垂直,则一个平面内,若垂直交线的直线则垂直另一个平面,垂直另一平面内所有直线,若不垂直与交线,也与另一平面内垂直交线的直线及其平行线垂直,也有无数条,故正确.④若两个二面角的两个面分别对应垂直,则这两个二面角关系不确定,如图:在正方体ABCD-A1B1C1D1中,二面角D-AA1-F与二面角D1-DC-A的两个半平面就是分别对应垂直的,但是这两个二面角既不相等,也不互补.故错误..故选:B【题目点拨】本题主要考查了点、线、面的位置关系,还考查了推理论证和理解辨析的能力,属于基础题.9、A【解题分析】
将原不等式化简并因式分解,由此求得不等式的解集.【题目详解】原不等式等价于,即,解得.故选A.【题目点拨】本小题主要考查一元二次不等式的解法,属于基础题.10、D【解题分析】
作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合即可得到结论.【题目详解】由线性约束条件作出可行域,如下图三角形阴影部分区域(含边界),令,直线:,平移直线,当过点时取得最大值,当过点时取得最小值,所以的取值范围是.【题目点拨】本题主要考查线性规划的应用.本题先正确的作出不等式组表示的平面区域,再结合目标函数的几何意义进行解答是解决本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】f(x)=coscos=cos·sin=sinπx,最小正周期为T==212、【解题分析】
先换元,令,所以,利用一次函数的单调性,列出等式,求出,然后利用正切型函数的周期公式求出即可.【题目详解】令,所以,由于,所以在上单调递减,即有,解得,,故最小正周期为.【题目点拨】本题主要考查三角函数的性质的应用,正切型函数周期公式的应用,以及换元法的应用.13、【解题分析】试题分析:因为,所以.考点:向量坐标运算.14、或0【解题分析】
运用向量的加减运算和特殊角的三角函数值,可得所求和.【题目详解】两点A(2,1)、B(1,1)满足(sinα,cosβ),可得(﹣1,)=(,)=(sinα,cosβ),即为sinα,cosβ,α,β∈(),可得α,β=±,则α+β=0或.故答案为0或.【题目点拨】本题考查向量的加减运算和三角方程的解法,考查运能力,属于基础题.15、【解题分析】16、【解题分析】
根据水的体积不变,列出方程,解出的值,即可得到答案.【题目详解】设圆锥形容器的底面面积为,则未倒置前液面的面积为,所以水的体积为,设倒置后液面面积为,则,所以,所以水的体积为,所以,解得.【题目点拨】本题主要考查了圆锥的结构特征,以及圆锥的体积的计算与应用,其中解答中熟练应用圆锥的结构特征,利用体积公式准确运算是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】试题分析:(1)依题意,则,将点的坐标代入函数的解析式可得,故,函数解析式为.(2)由题意可得,结合三角函数的性质可得函数的值域为.试题解析:(1)依题意,,故.将点的坐标代入函数的解析式可得,则,,故,故函数解析式为.(2)当时,,则,,所以函数的值域为.点睛:求函数f(x)=Asin(ωx+φ)在区间[a,b]上值域的一般步骤:第一步:三角函数式的化简,一般化成形如y=Asin(ωx+φ)+k的形式或y=Acos(ωx+φ)+k的形式.第二步:由x的取值范围确定ωx+φ的取值范围,再确定sin(ωx+φ)(或cos(ωx+φ))的取值范围.第三步:求出所求函数的值域(或最值).18、(1)(2)【解题分析】
(1)由弧长求出半径,再由面积求得圆心角;(2)先由诱导公式化简待求式为,利用两角差的正切公式可求.【题目详解】(1)设扇形的半径为r,则,所以.由可得,解得.(2)..【题目点拨】本题考查扇形的弧长与面积公式,考查诱导公式,同角间的三角函数关系,考查两角差的正切公式.求值时用诱导公式化简是解题关键..19、(1)4;(2)【解题分析】
(1)利用两角差的正弦和正弦定理将条件化成,再利用余弦定理代入,即可求得的值;(2)由可求得,的值,再由面积公式求得,结合余弦定理可得,解方程即可得答案.【题目详解】(1)∵,∴,∴∴,解得:.(2),,,,,∵,∴.【题目点拨】本题考查两角差的正弦、正弦定理、余弦定理的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.20、(1)见解析(2)【解题分析】
(1)取中点为,连接,由中位线定理证得,即证得平行四边形,于是有,这样就证得线面平行;(2)由等体积法变换后可计算.【题目详解】证明:(1)取中点为,连接,是平行四边形,平面,平面,∴平面解:(2)是线段中点,则【题目点拨】本题考查线面平行的判定,考查棱锥的体积.线面平行的证明关键是找到线线平行,而棱锥的体积常常用等积变换,转化顶点与底.21、(1),,,,;(2),;(3)证明见解析;【解题分析】
(1)根据题意从小到大计算中的值即可.(2)易得数列的所有项的和等于中的每个项重复加了次,再根据等比数列求和即可.(3)分别证明当时,若为等差数列则数列恰有7项以及当数列恰有7项证明为等差数列即可.【题目详解】(1)易得当,,,时,,,,,.(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年高效能玻璃钢化粪池采购协议范本版B版
- 2024自用房屋租赁合同
- 2025年违约借款合同纠纷解决途径3篇
- 二零二五年度新能源汽车OEM制造与零部件供应合同3篇
- 2025厂房土地买卖合同中对环境友好型建筑标准的约定3篇
- 2025年度森林资源管理与测绘合同范本3篇
- 2024网络安全与信息保密合同
- 二零二四三方询价采购合同-国际物流运输服务采购2篇
- 2024石料矿山资源整合与开采合同3篇
- 二零二五版全国CHS技术交流与合作合同3篇
- 劳务投标技术标
- 研发管理咨询项目建议书
- 湿疮的中医护理常规课件
- 转钱委托书授权书范本
- 一种配网高空作业智能安全带及预警系统的制作方法
- 某墓园物业管理日常管护投标方案
- 苏教版六年级数学上册集体备课记载表
- NUDD新独难异 失效模式预防检查表
- 内蒙古汇能煤电集团有限公司长滩露天煤矿矿山地质环境保护与土地复垦方案
- 22S702 室外排水设施设计与施工-钢筋混凝土化粪池
- 2013日产天籁全电路图维修手册45车身控制系统
评论
0/150
提交评论