2024届贵州省六盘水市盘县第二中学高一数学第二学期期末经典模拟试题含解析_第1页
2024届贵州省六盘水市盘县第二中学高一数学第二学期期末经典模拟试题含解析_第2页
2024届贵州省六盘水市盘县第二中学高一数学第二学期期末经典模拟试题含解析_第3页
2024届贵州省六盘水市盘县第二中学高一数学第二学期期末经典模拟试题含解析_第4页
2024届贵州省六盘水市盘县第二中学高一数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省六盘水市盘县第二中学高一数学第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的内角,,的对边分别为,,.已知,则()A. B. C. D.2.在中,是斜边上的两个动点,且,则的取值范围为()A. B. C. D.3.在各项均为正数的等比数列中,公比.若,,,数列的前n项和为,则当取最大值时,n的值为()A.8 B.9 C.8或9 D.174.如图所示是的图象的一段,它的一个解析式为()A. B.C. D.5.正方体中,异面直线与BC所成角的大小为()A. B. C. D.6.某小组由名男生、名女生组成,现从中选出名分别担任正、副组长,则正、副组长均由男生担任的概率为()A. B. C. D.7.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B. C. D.8.设等比数列的前项和为,若,,则()A.14 B.18 C.36 D.609.已知等比数列中,,且有,则()A. B. C. D.10.如图,,下列等式中成立的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若首项为,公比为()的等比数列满足,则的取值范围是________.12.已知点P(tanα,cosα)在第三象限,则角α的终边在第________象限.13.已知数列的前项和为,则其通项公式__________.14.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则an=_____15.当时,不等式成立,则实数k的取值范围是______________.16.已知,,,的等比中项是1,且,,则的最小值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(其中)的图象如图所示:(1)求函数的解析式及其对称轴的方程;(2)当时,方程有两个不等的实根,求实数的取值范围,并求此时的值.18.在中,角A,B,C所对的边分别为a,b,c,.(1)求角C;(2)若,,求的面积.19.已知函数。(1)若,求不等式的解集;(2)若,且,求的最小值。20.已知平面向量,.(1)若与垂直,求;(2)若,求.21.如图,等腰梯形中,,,,取中点,连接,把三角形沿折起,使得点在底面上的射影落在上,设为的中点.(1)求证:平面;(2)求二面角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

由正弦定理,整理得到,即可求解,得到答案.【题目详解】在中,因为,由正弦定理可得,因为,则,所以,即,又因为,则,故选A.【题目点拨】本题主要考查了正弦定理的应用,其中解答中熟练应用正弦定理的边角互化,以及特殊角的三角函数是解答的关键,着重考查了推理与运算能力,属于基础题.2、A【解题分析】

可借助直线方程和平面直角坐标系,代换出之间的关系,再结合向量的数量积公式进行求解即可【题目详解】如图所示:设直线方程为:,,,由得,可设,则,,,,当时,,故故选A【题目点拨】本题考查向量数量积的坐标运算,向量法在几何中的应用,属于中档题3、C【解题分析】∵为等比数列,公比为,且∴∴,则∴∴∴,∴数列是以4为首项,公差为的等差数列∴数列的前项和为令当时,∴当或9时,取最大值.故选C点睛:(1)在解决等差数列、等比数列的运算问题时,有两个处理思路:一是利用基本量将多元问题简化为一元问题;二是利用等差数列、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差数列、等比数列问题的快捷方便的工具;(2)求等差数列的前项和最值的两种方法:①函数法:利用等差数列前项和的函数表达式,通过配方或借助图象求二次函数最值的方法求解;②邻项变号法:当时,满足的项数使得取得最大值为;当时,满足的项数使得取得最小值为.4、D【解题分析】

根据函数的图象,得出振幅与周期,从而求出与的值.【题目详解】根据函数的图象知,振幅,周期,即,解得;所以时,,;解得,,所以函数的一个解析式为.故答案为D.【题目点拨】本题考查了函数的图象与性质的应用问题,考查三角函数的解析式的求法,属于基础题.5、D【解题分析】

利用异面直线与BC所成角的的定义,平移直线,即可得答案.【题目详解】在正方体中,易得.异面直线与垂直,即所成的角为.故选:D.【题目点拨】本题考查异面直线所成角的定义,考查对基本概念的理解,属于基础题.6、B【解题分析】

根据古典概型的概率计算公式,先求出基本事件总数,正、副组长均由男生担任包含的基本事件总数,由此能求出正、副组长均由男生担任的概率.【题目详解】某小组由2名男生、2名女生组成,现从中选出2名分别担任正、副组长,基本事件总数,正、副组长均由男生担任包含的基本事件总数,正、副组长均由男生担任的概率为.故选.【题目点拨】本题主要考查古典概型的概率求法。7、B【解题分析】由三视图可知,该几何体是一个棱长为的正方体挖去一个圆锥的组合体,正方体体积为,圆锥体积为几何体的体积为,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.8、A【解题分析】

由已知结合等比数列的求和公式可求,,q2,然后整体代入到求和公式即可求.【题目详解】∵等比数列{an}中,S2=2,S4=6,∴q≠1,则,联立可得,2,q2=2,S62×(1﹣23)=1.故选:A.【题目点拨】本题主要考查了等比数列的求和公式的简单应用,考查了整体代入的运算技巧,属于基础题.9、A【解题分析】,,所以选A10、B【解题分析】

本题首先可结合向量减法的三角形法则对已知条件中的进行化简,化简为然后化简并代入即可得出答案.【题目详解】因为,所以,所以,即,故选B.【题目点拨】本题考查的知识点是平面向量的基本定理,考查向量减法的三角形法则,考查数形结合思想与化归思想,是简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由题意可得且,即且,,化简可得由不等式的性质可得的取值范围.【题目详解】解:,故有且,化简可得且即故答案为:【题目点拨】本题考查数列极限以及不等式的性质,属于中档题.12、二【解题分析】

由点P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,从而得到α所在的象限.【题目详解】因为点P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,则角α的终边在第二象限,故答案为二.点评:本题考查第三象限内的点的坐标的符号,以及三角函数在各个象限内的符号.13、【解题分析】分析:先根据和项与通项关系得当时,,再检验,时,不满足上述式子,所以结果用分段函数表示.详解:∵已知数列的前项和,∴当时,,当时,,经检验,时,不满足上述式子,故数列的通项公式.点睛:给出与的递推关系求,常用思路是:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与之间的关系,再求.应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.14、【解题分析】

利用等比数列的前n项和公式列出方程组,求出首项与公比,由此能求出该数列的通项公式.【题目详解】由题意,,不合题意舍去;当等比数列的前n项和为,即,解得,所以,故答案为:.【题目点拨】本题主要考查了等比数列的通项公式的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.15、k∈(﹣∞,1]【解题分析】

此题先把常数k分离出来,再构造成再利用导数求函数的最小值,使其最小值大于等于k即可.【题目详解】由题意知:∵当0≤x≤1时(1)当x=0时,不等式恒成立k∈R(2)当0<x≤1时,不等式可化为要使不等式恒成立,则k成立令f(x)x∈(0,1]即f'(x)再令g(x)g'(x)∵当0<x≤1时,g'(x)<0∴g(x)为单调递减函数∴g(x)<g(0)=0∴f'(x)<0即函数f(x)为单调递减函数所以f(x)min=f(1)=1即k≤1综上所述,由(1)(2)得k≤1故答案为:k∈(﹣∞,1].【题目点拨】本题主要考查利用导数求函数的最值,属于中档题型.16、4【解题分析】

,的等比中项是1,再用均值不等式得到答案.【题目详解】,的等比中项是1当时等号成立.故答案为4【题目点拨】本题考查了等比中项,均值不等式,意在考查学生的综合应用能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2),.【解题分析】

(1)根据图像得A=2,利用,求ω值,再利用时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由得,方程f(x)=2a﹣3有两个不等实根转为f(x)的图象与直线y=2a﹣3有两个不同的交点,从而可求得a的取值范围,利用图像的性质可得的值.【题目详解】(1)由图知,,解得ω=2,f(x)=2sin(2x+φ),当时,函数取得最大值,可得,即,,解得,又所以,故,令则,所以的对称轴方程为;(2),所以方程有两个不等实根时,的图象与直线有两个不同的交点,可得,当时,,有,故.【题目点拨】本题考查由y=Asin(ωx+φ)的部分图象确定函数解析式,考查函数y=Asin(ωx+φ)的图象及性质的综合应用,属于中档题.18、(1);(2)【解题分析】

(1)利用正弦定理进行边化角,然后得到的值,从而得到;(2)根据余弦定理,得到关于的方程,从而得到,再根据面积公式,得到答案.【题目详解】(1)在中,根据正弦定理,由,可得,所以,因为为内角,所以,所以因为为内角,所以,(2)在中,,,由余弦定理得解得,所以.【题目点拨】本题考查正弦定理、余弦定理解三角形,三角形面积公式,属于简单题.19、(1)答案不唯一,具体见解析(2)【解题分析】

(1)由,对分类讨论,判断与的大小,确定不等式的解集.(2)利用把用表示,代入表示为的函数,利用基本不等式可求.【题目详解】解:(1)因为,所以,由,得,即,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;(2)因为,由已知,可得,∴,∵,∴,∴,当且仅当时取等号,所以的最小值为。【题目点拨】本题考查一元二次不等式的解法,基本不等式的应用,考查分类讨论的思想,运算求解能力,属于中档题.20、(1);(2)【解题分析】

(1)根据垂直数量积为0求解即可.(2)根据平行的公式求解,再计算即可.【题目详解】解:(1)由已知得,,解得或.因为,所以.(2)若,则,所以或.因为,所以.所以,所以.【题目点拨】本题主要考查了向量垂直与平行的运用以及模长的计算,属于基础题型.21、(1)见解析;(2).【解题分析】

(1)取的中点,取的中点,连接、、、、,可知、均为等边三角形,可证明出平面,从而得出,再证明出四边形为平行四边形,可得出,由等腰三角形三线合一的性质可得,从而可得出,再利用线面垂直的判定定理可证明出平面;(2)过点在平面内作,垂足为点,连接,证明出平面,可得知二面角的平面角为,计算出直角三角形三边边长,即可求出,即为所求.【题目详解】(1)如下图所示,取的中点,取的中点,连接、、、、,在等腰梯形中,,,,为的中点,所以,,又,则,为等边三角形,同理可知为等边三角形,为的中点,,,,平面,平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论