辽宁省大连市2024届数学高一下期末质量跟踪监视模拟试题含解析_第1页
辽宁省大连市2024届数学高一下期末质量跟踪监视模拟试题含解析_第2页
辽宁省大连市2024届数学高一下期末质量跟踪监视模拟试题含解析_第3页
辽宁省大连市2024届数学高一下期末质量跟踪监视模拟试题含解析_第4页
辽宁省大连市2024届数学高一下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省大连市2024届数学高一下期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则下列不等式一定成立的是()A. B. C. D.2.函数在区间(,)内的图象是()A. B. C. D.3.若则一定有()A. B. C. D.4.某部门为了了解用电量y(单位:度)与气温x(单位:°C)之间的关系,随机统计了某3天的用电量与当天气温如表所示.由表中数据得回归直线方程y=-0.8x+a,则摄氏温度(°C)4611用电量度数1074A.12.6 B.13.2 C.11.8 D.12.85.已知平行四边形对角线与交于点,设,,则()A. B. C. D.6.在正方体中,异面直线与所成的角为()A.30° B.45° C.60° D.90°7.用3种不同颜色给2个矩形随机涂色,每个矩形涂且只涂种颜色,则2个矩形颜色不同的概率为()A.13 B.12 C.28.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆面积为A. B.π C.2π D.4π9.在等差数列an中,a1+a2A.2n B.2n+1 C.2n-1 D.2n+210.若,则()A.-1 B. C.-1或 D.或二、填空题:本大题共6小题,每小题5分,共30分。11.某公司租地建仓库,每月土地占用费(万元)与仓库到车站的距离(公里)成反比.而每月库存货物的运费(万元)与仓库到车站的距离(公里)成正比.如果在距车站公里处建仓库,这两项费用和分别为万元和万元,由于地理位置原因.仓库距离车站不超过公里.那么要使这两项费用之和最小,最少的费用为_____万元.12.数列中,已知,50为第________项.13.在中,,,.若,,且,则的值为______________.14.一艘轮船按照北偏西30°的方向以每小时21海里的速度航行,一个灯塔M原来在轮船的北偏东30°的方向,经过40分钟后,测得灯塔在轮船的北偏东75°的方向,则灯塔和轮船原来的距离是_____海里.15.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3:5:7,现用分层抽样的方法抽出容量为的样本,其中甲种产品有18件,则样本容量=.16.设,,,,则数列的通项公式=.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在锐角中,角的对边分别是,且.(1)求角的大小;(2)若,求面积的最大值.18.平面内给定三个向量=(3,2),=(-1,2),=(4,1).(1)求满足的实数m,n;(2)若,求实数k;19.已知函数的图象过点.(1)求的值;(2)判断的奇偶性并证明.20.设等差数列的前项和为,且(是常数,),.(1)求的值及数列的通项公式;(2)设,求数列的前项和为.21.内角的对边分别为,已知.(1)求;(2)若,,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】试题分析:若,那么,A错;,B错;是单调递减函数当时,所以,C.正确;是减函数,所以,故选C.考点:不等式2、D【解题分析】解:函数y=tanx+sinx-|tanx-sinx|=分段画出函数图象如D图示,故选D.3、D【解题分析】本题主要考查不等关系.已知,所以,所以,故.故选4、A【解题分析】

计算数据中心点,代入回归方程得到答案.【题目详解】x=4+6+113=7,代入回归方程y7=-0.8×7+a故答案选A【题目点拨】本题考查了回归方程,掌握回归方程过中心点是解题的关键.5、B【解题分析】

根据向量减法的三角形法则和数乘运算直接可得结果.【题目详解】本题正确选项:【题目点拨】本题考查向量的线性运算问题,涉及到向量的减法和数乘运算的应用,属于基础题.6、C【解题分析】

首先由可得是异面直线和所成角,再由为正三角形即可求解.【题目详解】连接.因为为正方体,所以,则是异面直线和所成角.又,可得为等边三角形,则,所以异面直线与所成角为,故选:C【题目点拨】本题考查异面直线所成的角,利用平行构造三角形或平行四边形是关键,考查了空间想象能力和推理能力,属于中档题.7、C【解题分析】

由古典概型及概率计算公式得2个矩形颜色不同的概率为69【题目详解】用3种不同颜色给2个矩形随机涂色,每个矩形涂且只涂1种颜色,共32则2个矩形颜色不同共A3即2个矩形颜色不同的概率为69故选:C.【题目点拨】本题考查了古典概型及概率计算公式,属于基础题.8、B【解题分析】

根据正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.【题目详解】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.故选B.【题目点拨】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.9、C【解题分析】

直接利用等差数列公式解方程组得到答案.【题目详解】aaa1故答案选C【题目点拨】本题考查了等差数列的通项公式,属于基础题型.10、C【解题分析】

将已知等式平方,可根据二倍角公式、诱导公式和同角三角函数平方关系将等式化为,解方程可求得结果.【题目详解】由得:即,解得:或本题正确选项:【题目点拨】本题考查三角函数值的求解问题,关键是能够通过平方运算,将等式化简为关于的方程,涉及到二倍角公式、诱导公式和同角三角函数平方关系的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、8.2【解题分析】

设仓库与车站距离为公里,可得出、关于的函数关系式,然后利用双勾函数的单调性求出的最小值.【题目详解】设仓库与车站距离为公里,由已知,.费用之和,求中,由双勾函数的单调性可知,函数在区间上单调递减,所以,当时,取得最小值万元,故答案为:.【题目点拨】本题考查利用双勾函数求最值,解题的关键就是根据题意建立函数关系式,再利用基本不等式求最值时,若等号取不到时,可利用相应的双勾函数的单调性来求解,考查分析问题和解决问题的能力,属于中等题.12、4【解题分析】

方程变为,设,解关于的二次方程可求得。【题目详解】,则,即设,则,有或取得,,所以是第4项。【题目点拨】发现,原方程可通过换元,变为关于的一个二次方程。对于指数结构,,等,都可以通过换元变为二次形式研究。13、【解题分析】,则.【考点】向量的数量积【名师点睛】根据平面向量的基本定理,利用表示平面向量的一组基地可以表示平面内的任一向量,利用向量的定比分点公式表示向量,计算数量积,选取基地很重要,本题的已知模和夹角,选作基地易于计算数量积.14、【解题分析】

画出示意图,利用正弦定理求解即可.【题目详解】如图所示:为灯塔,为轮船,,则在中有:,且海里,则解得:海里.【题目点拨】本题考查解三角形的实际应用,难度较易.关键是能通过题意将航海问题的示意图画出,然后选用正余弦定理去分析问题.15、【解题分析】试题分析:由题意得,解得,故答案为.考点:分层抽样.16、2n+1【解题分析】由条件得,且,所以数列是首项为4,公比为2的等比数列,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)利用正弦定理边转化为角,逐步化简,即可得到本题答案;(2)由余弦定理得,,综合,得,从而可得到本题答案.【题目详解】(1)因为,所以,即,所以,又,所以,由为锐角三角形,则;(2)因为,所以,所以,即(当且仅当时取等号),所以.【题目点拨】本题主要考查利用正弦定理边角转化求角,以及余弦定理和基本不等式综合运用求三角形面积的最大值.18、(1);(2).【解题分析】

(1)由及已知得,由此列方程组能求出实数;(2)由,可得,由此能求出的值.【题目详解】(1)由题意得(3,2)=m(-1,2)+n(4,1),所以,解得;(2)∵a+kc=(3+4k,2+k),2b-a=(-5,2),∴2×(3+4k)-(-5)×(2+k)=0.∴k=.【题目点拨】本题主要考查相等向量与共线向量的性质,属于简单题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.19、(1),(2)奇函数,证明见解析【解题分析】

(1)将代入解析式,解方程即可.【题目详解】(1)由题知:,解得.(2).,定义域为:.,.所以,所以为奇函数.【题目点拨】本题第一问考查对数的运算,第二问考查函数奇偶的判断,属于中档题.20、(1);(2)【解题分析】

(1)先令得出,再令,利用作差法得出,于此得出,可由和的值求出等差数列的公差,于此可求出等差数列的通项公式;(2)先求出数列的通项公式,再利用错位相减法求出数列的前项和.【题目详解】(1)因为,所以当时,,解得.当时,,即.解得,所以,解得,则.数列的公差.所以;(2)因为,所以,①,②由①-②可得,所以.【题目点拨】本题考查等差数列通项的求解,考查错位相减法求和,解题时要注意错位相减求和法所适用数列通项的结构类型,要熟练错位相减法求和的基本步骤,难点在于计算量较大,属于中等题.21、(1);(2).【解题分析】

(1)应用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论