2024届江苏省蒋王中学高一数学第二学期期末检测模拟试题含解析_第1页
2024届江苏省蒋王中学高一数学第二学期期末检测模拟试题含解析_第2页
2024届江苏省蒋王中学高一数学第二学期期末检测模拟试题含解析_第3页
2024届江苏省蒋王中学高一数学第二学期期末检测模拟试题含解析_第4页
2024届江苏省蒋王中学高一数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省蒋王中学高一数学第二学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的斜二测直观图如图所示,则原的面积为()A. B.1 C. D.22.设,是定义在上的两个周期函数,的周期为,的周期为,且是奇函数.当时,,,其中.若在区间上,函数有个不同的零点,则的取值范围是()A. B. C. D.3.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积(弦矢+矢).弧田,由圆弧和其所对弦所围成.公式中“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,弦长等于的弧田.按照《九章算术》中弧田面积的经验公式计算所得弧田面积为()A. B. C. D.4.已知数列是公比不为1的等比数列,为其前n项和,满足,且成等差数列,则()A. B.6 C.7 D.95.已知某线路公交车从6:30首发,每5分钟一班,甲、乙两同学都从起点站坐车去学校,若甲每天到起点站的时间是在6:30~7:00任意时刻随机到达,乙每天到起点站的时间是在6:45~7:15任意时刻随机到达,那么甲、乙两人搭乘同一辆公交车的概率是()A. B. C. D.6.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均值也相等,则和的值分别为A.5,5 B.3,5 C.3,7 D.5,77.若变量满足约束条件,则的最大值是()A.0 B.2 C.5 D.68.已知随机变量服从正态分布,且,,则()A.0.2 B.0.3 C.0.7 D.0.89.《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织()尺布.A. B. C. D.10.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.倍 B.2倍 C.倍 D.倍二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则______.12.在中,角、、所对应边分别为、、,,的平分线交于点,且,则的最小值为______13.过P(1,2)的直线把圆分成两个弓形,当其中劣孤最短时直线的方程为_________.14.己知数列满足就:,,若,写出所有可能的取值为______.15.在数列中,,当时,.则数列的前项和是_____.16.已知函数在时取得最小值,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利分别为和,可能的最大亏损率分别为和.投资人计划投资金额不超过亿元,要求确保可能的资金亏损不超过亿元,问投资人对甲、乙两个项目各投资多少亿元,才能使可能的盈利最大?18.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.19.如图,在直三棱柱中,,二面角为直角,为的中点.(1)求证:平面平面;(2)求直线与平面所成的角.20.已知数列的前项和为,且,.(1)求数列的通项公式;(2)已知,记(且),是否存在这样的常数,使得数列是常数列,若存在,求出的值;若不存在,请说明理由;(3)若数列,对于任意的正整数,均有成立,求证:数列是等差数列.21.如图,在四棱锥P~ABCD中,底面ABCD为矩形,E,F分别为AD,PB的中点,PE⊥平面ABCD,AP⊥DP,AP=DP.(1)求证:EF∥平面PCD;(2)设G为AB中点,求证:平面EFG⊥平面PCD.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

根据直观图可计算其面积为,原的面积为,由得结论.【题目详解】由题意可得,所以由,即.故选:D.【题目点拨】本题考查了斜二侧画直观图,三角形的面积公式,需要注意的是与原图与直观图的面积之比为,属于基础题.2、B【解题分析】

根据题意可知,函数和在上的图象有个不同的交点,作出两函数图象,即可数形结合求出.【题目详解】作出两函数的图象,如图所示:由图可知,函数和在上的图象有个不同的交点,故函数和在上的图象有个不同的交点,才可以满足题意.所以,圆心到直线的距离为,解得,因为两点连线斜率为,所以,.故选:B.【题目点拨】本题主要考查了分段函数的图象应用,函数性质的应用,函数的零点个数与两函数图象之间的交点个数关系的应用,意在考查学生的转化能力和数形结合能力,属于中档题.3、C【解题分析】

首先根据图形计算出矢,弦,再带入弧田面积公式即可.【题目详解】如图所示:因为,,为等边三角形.所以,矢,弦..故选:C【题目点拨】本题主要考查扇形面积公式,同时考查学生对题意的理解,属于中档题.4、C【解题分析】

设等比数列的公比为,且不为1,由等差数列中项性质和等比数列的通项公式,解方程可得首项和公比,再由等比数列的求和公式,可得答案.【题目详解】数列是公比不为l的等比数列,满足,即且成等差数列,得,即,解得,则.故选:C.【题目点拨】本题考查等差数列中项性质和等比数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.5、D【解题分析】

根据甲、乙的到达时间,作出可行域,然后考虑甲、乙能同乘一辆公交车对应的区域面积,根据几何概型的概率求解方法即可求解出对应概率.【题目详解】设甲到起点站的时间为:时分,乙到起点站的时间为时分,所以,记事件为甲乙搭乘同一辆公交车,所以,作出可行域以及目标区域如图所示:由几何概型的概率计算可知:.故选:D.【题目点拨】本题考查利用线性规划的可行域解决几何概型中的面积模型问题,对于分析和转化的能力要求较高,注意几何概型中面积模型的概率计算方法,难度较难.6、B【解题分析】

利用茎叶图、中位数、平均数的性质直接求解.【题目详解】由茎叶图得:∵甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,∴65=60+y,解得y=5,∵平均值也相等,∴,解得x=1.故选B.【题目点拨】本题考查实数值的求法,考查茎叶图、中位数、平均数的性质等基础知识,考查运算求解能力,是基础题.7、C【解题分析】

由题意作出不等式组所表示的平面区域,将化为,相当于直线的纵截距,由几何意义可得结果.【题目详解】由题意作出其平面区域,令,化为,相当于直线的纵截距,由图可知,,解得,,则的最大值是,故选C.【题目点拨】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8、B【解题分析】随机变量服从正态分布,所以曲线关于对称,且,由,可知,所以,故选B.9、B【解题分析】由题可知每天织的布的多少构成等差数列,其中第一天为首项,一月按30天计可得,从第2天起每天比前一天多织的即为公差.又,解得.故本题选B.10、C【解题分析】

以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可.【题目详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三家性的高变为原来的sin45°=,故直观图中三角形面积是原三角形面积的.故选C.【题目点拨】本题重点考查了斜二侧画法、平面图形的面积的求解方法等知识,属于中档题.解题关键是准确理解斜二侧画法的内涵,与x轴平行的线段长度保持不变,与y轴平行的线段的长度减少为原来的一半.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

利用同角三角函数的基本关系将弦化切,再代入计算可得.【题目详解】解:,故答案为:【题目点拨】本题考查同角三角函数的基本关系,齐次式的计算,属于基础题.12、18【解题分析】

根据三角形面积公式找到的关系,结合基本不等式即可求得最小值.【题目详解】根据题意,,因为的平分线交于点,且,所以而所以,化简得则当且仅当,即,时取等号,即最小值为.故答案为:【题目点拨】本题考查三角形面积公式和基本不等式,考查计算能力,属于中等题型13、【解题分析】

首先根据圆的几何性质,可分析出当点是弦的中点时,劣弧最短,利用圆心和弦的中点连线与直线垂直,可求得直线方程.【题目详解】当劣弧最短时,即劣弧所对的弦最短,当点是弦的中点时,此时弦最短,也即劣弧最短,圆:,圆心,,,直线方程是,即,故填:.【题目点拨】本题考查了直线与圆的位置关系,以及圆的几何性质,属于基础题型.14、【解题分析】(1)若为偶数,则为偶,故①当仍为偶数时,故②当为奇数时,故得m=4。(2)若为奇数,则为偶数,故必为偶数,所以=1可得m=515、【解题分析】

先利用累加法求出数列的通项公式,然后将数列的通项裂开,利用裂项求和法求出数列的前项和.【题目详解】当时,.所以,,,,,.上述等式全部相加得,.,因此,数列的前项和为,故答案为:.【题目点拨】本题考查累加法求数列通项和裂项法求和,解题时要注意累加法求通项和裂项法求和对数列递推公式和通项公式的要求,考查运算求解能力,属于中等题.16、【解题分析】试题分析:因为,所以,当且仅当即,由题意,解得考点:基本不等式三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、投资人用亿元投资甲项目,亿元投资乙项目,才能在确保亏损不超过亿元的前提下,使可能的盈利最大.【解题分析】

设投资人分别用亿元、亿元投资甲、乙两个项目,根据题意列出变量、所满足的约束条件和线性目标函数,利用平移直线的方法得出线性目标函数取得最大值时的最优解,并将最优解代入线性目标函数可得出盈利的最大值,从而解答该问题.【题目详解】设投资人分别用亿元、亿元投资甲、乙两个项目,由题意知,即,目标函数为.上述不等式组表示平面区域如图所示,阴影部分(含边界)即可行域.由图可知,当直线经过点时,该直线在轴上截距最大,此时取得最大值,解方程组,得,所以,点的坐标为.当,时,取得最大值,此时,(亿元).答:投资人用亿元投资甲项目,亿元投资乙项目,才能在确保亏损不超过亿元的前提下,使可能的盈利最大.【题目点拨】本题考查线性规划的实际应用,考查利用数学知识解决实际问题,解题的关键就是列出变量所满足的约束条件,并利用数形结合思想求解,考查分析问题和解决问题的能力,属于中等题.18、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解题分析】

(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直;(Ⅲ)由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点.【题目详解】(Ⅰ)证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.(Ⅱ)证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.(Ⅲ)存在点为中点时,满足平面;理由如下:分别取的中点,连接,在三角形中,且;在菱形中,为中点,所以且,所以且,即四边形为平行四边形,所以;又平面,平面,所以平面.【题目点拨】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.19、(1)证明见详解;(2).【解题分析】

(1)先证明平面,再推出面面垂直;(2)由(1)可知即为所求,在三角形中求角即可.【题目详解】(1)证明:因为,所以;又为的中点,所以.在直三棱柱中,平面.又因为平面中,所以,因为,所以平面,又因为平面,所以平面平面.(2)由(1)知为在平面内的射影,所以为直线与平面所成的角,设,则,在中,,在中,,又,得,因此直线与平面所成的角为.【题目点拨】本题第一问考查由线面垂直证明面面垂直,第二问考查线面角的求解,属综合基础题.20、(1)(2)(3)见解析【解题分析】

(1)根据和项与通项关系得,再根据等比数列定义与通项公式求解(2)先化简,再根据恒成立思想求的值(3)根据和项得,再作差得,最后根据等差数列定义证明.【题目详解】(1),所以,由得时,,两式相减得,,,数列是以2为首项,公比为的等比数列,所以.(2)若数列是常数列,为常数.只有,解得,此时.(3)①,,其中,所以,当时,②②式两边同时乘以得,③①式减去③得,,所以,因为,所以数列是以为首项,公差为的等差数列.【题目点拨】本题考查利用和项求通项、等差数列定义以及利用恒成立思想求参数,考查基本分析论证与求解能力,属中档题21、(1)证明见解析(2)证明见解析【解题分析】

(1)取的中点,连接,通

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论