




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省中国第二十冶金建设公司综合学校高中分校2024届高一数学第二学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知中,,,的对边分别是,,,且,,,则边上的中线的长为()A. B.C.或 D.或2.设,若不等式恒成立,则实数a的取值范围是()A. B. C. D.3.若实数x,y满足x2y2A.4,8 B.8,+4.某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4”;事件D:“击中环数大于0且小于4”,则正确的关系是A.A和B为对立事件 B.B和C为互斥事件C.C与D是对立事件 D.B与D为互斥事件5.函数的单调减区间为()A.(kπ﹣,kπ],(k∈Z) B.(kπ﹣,kπ],(k∈Z)C.(kπ﹣,kπ+],(k∈Z) D.(kπ+,kπ+],(k∈Z)6.如图:样本A和B分别取自两个不同的总体,他们的样本平均数分别为和,样本标准差分别为和,则()A.B.C.D.7.已知函数在上是x的减函数,则a的取值范围是()A. B. C. D.8.在平面直角坐标系中,已知四边形是平行四边形,,,则()A. B. C. D.9.已知角是第三象限的角,则角是()A.第一或第二象限的角 B.第二或第三象限的角C.第一或第三象限的角 D.第二或第四象限的角10.如果且,那么的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,若,则____;12.已知直线l在y轴上的截距为1,且垂直于直线,则的方程是____________.13.在△ABC中,内角A、B、C所对的边分别为a、b、c,若,则_____.14.sin750°=15.函数的单调增区间是_________16.下列关于函数与的命题中正确的结论是______.①它们互为反函数;②都是增函数;③都是周期函数;④都是奇函数.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.足球,有“世界第一运动的美誉,是全球体育界最具影响力的单项体育运动之一.足球传球是足球运动技术之一,是比赛中组织进攻、组织战术配合和进行射门的主要手段.足球截球也是足球运动技术的一种,是将对方控制或传出的球占为己有,或破坏对方对球的控制的技术,是比赛中由守转攻的主要手段.这两种运动技术都需要球运动员的正确判断和选择.现有甲、乙两队进行足球友谊赛,A、B两名运动员是甲队队员,C是乙队队员,B在A的正西方向,A和B相距20m,C在A的正北方向,A和C相距14m.现A沿北偏西60°方向水平传球,球速为10m/s,同时B沿北偏西30°方向以10m/s的速度前往接球,C同时也以10m/s的速度前去截球.假设球与B、C都在同一平面运动,且均保持匀速直线运动.(1)若C沿南偏西60°方向前去截球,试判断B能否接到球?请说明理由.(2)若C改变(1)的方向前去截球,试判断C能否球成功?请说明理由.18.已知为数列的前项和,且.(1)求数列的通项公式;(2)若,求数列的前项和.19.如图,已知是正三角形,EA,CD都垂直于平面ABC,且,,F是BE的中点,求证:(1)平面ABC;(2)平面EDB.(3)求几何体的体积.20.已知数列的前项和为,满足,,数列满足,,且.(1)求数列的通项公式;(2)求证:数列是等差数列,求数列的通项公式;(3)若,数列的前项和为,对任意的,都有,求实数的取值范围.21.某校高一年级有学生480名,对他们进行政治面貌和性别的调查,其结果如下:性别团员群众男80女180(1)若随机抽取一人,是团员的概率为,求,;(2)在团员学生中,按性别用分层抽样的方法,抽取一个样本容量为5的样本,然后在这5名团员中任选2人,求两人中至多有1个女生的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
由已知利用余弦定理可得,解得a值,由已知可求中线,在中,由余弦定理即可计算AB边上中线的长.【题目详解】解:,由余弦定理,可得,整理可得:,解得或1.如图,CD为AB边上的中线,则,在中,由余弦定理,可得:,或,解得AB边上的中线或.故选C.【题目点拨】本题考查余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.2、D【解题分析】
由题意可得恒成立,讨论,,运用基本不等式,可得最值,进而得到所求范围.【题目详解】恒成立,即为恒成立,当时,可得的最小值,由,当且仅当取得最小值8,即有,则;当时,可得的最大值,由,当且仅当取得最大值,即有,则,综上可得.故选.【题目点拨】本题主要考查不等式恒成立问题的解法,注意运用参数分离和分类讨论思想,以及基本不等式的应用,意在考查学生的转化思想、分类讨论思想和运算能力.3、A【解题分析】
利用基本不等式得x2y2【题目详解】∵x2y2≤(x2+y2)24∴x2故选A.【题目点拨】本题考查基本不等式求最值问题,解题关键是掌握基本不等式的变形应用:ab≤(a+b)4、D【解题分析】
根据互斥事件和对立事件的概念,进行判定,即可求解,得到答案.【题目详解】由题意,A项中,事件“击中环数等于4环”可能发生,所以事件A和B为不是对立事件;B项中,事件B和C可能同时发生,所以事件B和C不是互斥事件;C项中,事件“击中环数等于0环”可能发生,所以事件C和D为不是对立事件;D项中,事件B:“击中环数大于4”与事件D:“击中环数大于0且小于4”,不可能同时发生,所以B与D为互斥事件,故选D.【题目点拨】本题主要考查了互斥事件和对立事件的概念及判定,其中解答中熟记互斥事件和对立事件的概念,准确判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5、C【解题分析】
根据复合函数的单调性,得到函数的减区间,即为的增区间,且,根据三角函数的图象与性质,即可求解.【题目详解】由题意,函数在定义域上是减函数,根据复合函数的单调性,可得函数的减区间,即的增区间,且,则,得,则函数的单调递减区间为,故选C.【题目点拨】本题主要考查了对数函数及三角函数的图象与性质的应用,其中解答中熟记对数函数的性质,以及三角函数的图象与性质,根据复合函数的单调性进行判定是解答的关键,着重考查了推理与运算能力,属于基础题.6、B【解题分析】
从图形中可以看出样本A的数据均不大于10,而样本B的数据均不小于10,A中数据波动程度较大,B中数据较稳定,由此得到结论.【题目详解】∵样本A的数据均不大于10,而样本B的数据均不小于10,,由图可知A中数据波动程度较大,B中数据较稳定,.故选B.7、C【解题分析】
由复合函数单调性及函数的定义域得不等关系.【题目详解】由题意,解得.故选:C.【题目点拨】本题考查对数型复合函数的单调性,解题时要注意对数函数的定义域.8、D【解题分析】因为四边形是平行四边形,所以,所以,故选D.考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算.9、D【解题分析】
可采取特殊化的思路求解,也可将各象限分成两等份,再从x轴正半轴起,逆时针依次将各区域标上一、二、三、四,则标有三的即为所求区域.【题目详解】(方法一)取,则,此时角为第二象限的角;取,则,此时角为第四象限的角.(方法二)如图,先将各象限分成两等份,再从x轴正半轴起,逆时针依次将各区域标上一、二、三、四,则标有三的区域即为角的终边所在的区域,故角为第二或第四象限的角.故选:D【题目点拨】本题主要考查了根据所在象限求所在象限的方法,属于中档题.10、B【解题分析】
取,故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】试题分析:因为,所以.由正弦定理,知,所以==.考点:1、同角三角函数间的基本关系;2、正弦定理.12、;【解题分析】试题分析:设垂直于直线的直线为,因为直线在轴上的截距为,所以,所以直线的方程是.考点:两直线的垂直关系.13、【解题分析】
先利用同角三角函数的商数关系可得,再结合正弦定理及余弦定理化简可得,然后求解即可.【题目详解】解:因为,则,所以,即,所以,则,即,即即,故答案为:.【题目点拨】本题考查了同角三角函数的商数关系,重点考查了正弦定理及余弦定理的应用,属中档题.14、1【解题分析】试题分析:由三角函数的诱导公式得sin750°=【考点】三角函数的诱导公式【名师点睛】本题也可以看作来自于课本的题,直接利用课本公式解题,这告诉我们一定要立足于课本.有许多三角函数的求值问题都是通过三角函数公式把一般的三角函数求值化为特殊角的三角函数求值而得解.15、,【解题分析】
令,即可求得结果.【题目详解】令,解得:,所以单调递增区间是,故填:,【题目点拨】本题考查了型如:单调区间的求法,属于基础题型.16、④【解题分析】
利用反函数,增减性,周期函数,奇偶性判断即可【题目详解】①,当时,的反函数是,故错误;②,当时,是增函数,故错误;③,不是周期函数,故错误;④,与都是奇函数,故正确故答案为④【题目点拨】本题考查正弦函数及其反函数的性质,熟记其基本性质是关键,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)能接到;(2)不能接到【解题分析】
(1)在中由条件可得,,进一步可得为等边三角形,然后计算运动到点所需时间即可判断;(2)建立平面直角坐标系,作于,求出直线的方程,然后计算到直线的距离即可判断.【题目详解】(1)如图所示,在中,,,,,,由题意可知,如果不运动,经过,可以接到球,在上取点,使得,,为等边三角形,,,队员运动到点要,此时球运动了.所以能接到球.(2)建立如图所示的平面直角坐标系,作于,所以直线的方程为:,经过,运动了.点到直线的距离,所以以为圆心,半径长为的圆与直线相离.故改变(1)的方向前去截球,不能截到球.【题目点拨】本题主要考查了三角形的实际应用,以及点到直线的距离的应用,考查了推理与运算能力,属中档题.18、(1)(2)当时,;当时,;当时,【解题分析】
(1)利用,时单独讨论.求解.
(2)对时单独讨论,当时,对从到的和应用错位相减法求和.【题目详解】当时,,得.当时,即.所以数列是以3为首项,3为公比的等比数列.所以(2)设,则..当时,当时,当时,设………………由﹣得所以所以综上所述:当时,当时,当时,【题目点拨】本题考查应用求通项公式和应用错位相减法求前项和,考查计算能力,属于难题.19、(1)见解析(2)见解析(3)【解题分析】
(1)如图:证明得到答案.(2)证明得到答案.(3)几何体转化为,利用体积公式得到答案.【题目详解】(1)∵F分别是BE的中点,取BA的中点M,∴FM∥EA,FMEA=1∵EA、CD都垂直于平面ABC,∴CD∥EA,∴CD∥FM,又CD=FM∴四边形FMCD是平行四边形,∴FD∥MC,FD⊄平面ABC,MC⊂平面ABC∴FD∥平面ABC.(2)因M是AB的中点,△ABC是正三角形,所以CM⊥AB又EA垂直于平面ABC∴CM⊥AE,又AE∩AB=A,所以CM⊥面EAB,∵AF⊂面EAB∴CM⊥AF,又CM∥FD,从而FD⊥AF,因F是BE的中点,EA=AB所以AF⊥EB.EB,FD是平面EDB内两条相交直线,所以AF⊥平面EDB.(3)几何体的体积等于为中点,连接平面【题目点拨】本题考查了线面平行,线面垂直,等体积法,意在考查学生的空间想象能力和计算能力.20、(1);(2)证明见解析,;(3)或.【解题分析】
(1)运用数列的递推式以及数列的和与通项的关系可得,再由等比数列的定义、通项公式可得结果;(2)对等式两边除以,结合等差数列的定义和通项公式,可得所求;(3)求得,由数列的错位相减法求和,可得,化简,即,对任意的成立,运用数列的单调性可得最大值,解不等式可得所求范围.【题目详解】(1),可得,即;时,,又,相减可得,即,则;(2)证明:,可得,可得是首项和公差均为1的等差数列,可得,即;(3),前n项和为,,相减可得,可得,,即为,即,对任意的成立,由,可得为递减数列,即n=1时取得最大值1−2=−1,可得,即或.【题目点拨】“错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.21、(1),;(2).【解题分析】
(1)随机抽取一人,是团员的概率为,得,再由总人数为480得的另一个关系式,联立求解,即可得出结论;(2)根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年汽车维修工考试注意事项
- 六年级语文考前互助小组题及答案
- 汽车维修工考试内容的深度解读试题及答案
- 药物相互作用探讨试题及答案
- 2024年统计学考试技巧试题及答案
- 第2讲 匀变速直线运动的规律-2026版大一轮高考物理复习
- 古代文学形态的多样化与发展趋势试题及答案
- 2024年汽车美容行业发展政策试题及答案
- 2024年食品质检员考试案例分析及答案
- 二手车评估师法律法规知识试题及答案
- 江西省南昌中学2024-2025学年高一下学期3月月考地理试题(原卷版+解析版)
- 落实“215”专项行动:xx小学体育“加速度”
- 老年人60岁以上C1驾考三力测试题及答案
- 2020-2021学年江苏省南京外国语河西初级中学等三校七年级(下)期中数学试卷
- 第四单元《认识20~99》-2024-2025学年一年级数学下册单元检测卷(苏教版·2024新教材)
- 小学生航天知识普及课件
- 2025年河南经贸职业学院单招职业技能测试题库及答案一套
- 《自动驾驶技术》课件
- 部编版2025春六年级下册语文11《十六年前的回忆》 课件
- 财务大数据分析与可视化课件 项目3 快速实践Power BI
- DB3303T 059-2023 政务信息化项目软件开发费用测算规范
评论
0/150
提交评论