




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省宁阳市高一数学第二学期期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数,,其中,.若,且的最小正周期大于,则()A., B.,C., D.,2.在中,,设向量与的夹角为,若,则的取值范围是()A. B. C. D.3.当点到直线的距离最大时,m的值为()A.3 B.0 C. D.14.中,角所对的边分别为,已知向量,,且共线,则的形状是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形5.在△ABC中,sinA:sinB:sinC=4:3:2,则cosA的值是()A. B. C. D.6.已知平面向量,,,,在下列命题中:①存在唯一的实数,使得;②为单位向量,且,则;③;④与共线,与共线,则与共线;⑤若且,则.正确命题的序号是()A.①④⑤ B.②③④ C.①⑤ D.②③7.设,,均为正实数,则三个数,,()A.都大于2 B.都小于2C.至少有一个不大于2 D.至少有一个不小于28.已知直线是平面的斜线,则内不存在与(
)A.相交的直线 B.平行的直线C.异面的直线 D.垂直的直线9.在区间上随机选取一个实数,则事件“”发生的概率是()A. B. C. D.10.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为A.; B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,的夹角为°,,,则______.12.已知向量,且,则___________.13.已知为等差数列,,前n项和取得最大值时n的值为___________.14.中,若,,,则的面积______.15.已知角的终边上一点P落在直线上,则______.16.已知向量满足,则与的夹角的余弦值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱柱中,侧棱底面,,,,,且点和分别为和的中点.(1)求证:平面;(2)求二面角的正弦值;(3)设为棱上的点,若直线和平面所成角的正弦值为,求线段的长.18.设是一个公比为q的等比数列,且,,成等差数列.(1)求q;(2)若数列前4项的和,令(),求数列的前n项和.19.如图,四棱锥P-ABCD中,底面ABCD,,,,M为线段AD上一点,,N为PC的中点.(1)证明:平面PAB;(2)求直线AN与平面PMN所成角的余弦值.20.两地相距千米,汽车从地匀速行驶到地,速度不超过千米小时,已知汽车每小时的运输成本(单位:元)由可变部分和固定部分两部分组成:可变部分与速度的平方成正比,比例系数为,固定部分为元,(1)把全程运输成本(元)表示为速度(千米小时)的函效:并求出当时,汽车应以多大速度行驶,才能使得全程运输成本最小;(2)随着汽车的折旧,运输成本会发生一些变化,那么当,此时汽车的速度应调整为多大,才会使得运输成本最小,21.某地统计局调查了10000名居民的月收入,并根据所得数据绘制了样本的频率分布直方图如图所示.(1)求居民月收入在[3000,3500)内的频率;(2)根据频率分布直方图求出样本数据的中位数;(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
根据周期以及最值点和平衡位置点先分析的值,然后带入最值点计算的值.【题目详解】因为,,所以,则,所以,即,故;则,代入可得:且,所以.故选B.【题目点拨】(1)三角函数图象上,最值点和平衡位置的点之间相差奇数个四分之一周期的长度;(2)计算的值时,注意选用最值点或者非特殊位置点,不要选用平衡位置点(容易多解).2、A【解题分析】
根据向量与的夹角的余弦值,得到,然后利用正弦定理,表示出,根据的范围,得到的范围.【题目详解】因为向量与的夹角为,且,所以,在中,由正弦定理,得,所以,因为,所以,所以.故选:A.【题目点拨】本题考查向量的夹角,正弦定理解三角形,求正弦函数的值域,属于简单题.3、C【解题分析】
求得直线所过的定点,当和直线垂直时,距离取得最大值,根据斜率乘积等于列方程,由此求得的值.【题目详解】直线可化为,故直线过定点,当和直线垂直时,距离取得最大值,故,故选C.【题目点拨】本小题主要考查含有参数的直线过定点的问题,考查点到直线距离的最值问题,属于基础题.4、D【解题分析】
由向量共线的坐标表示得一等式,然后由正弦定理化边为角,利用诱导公式得展开后代入原式化简得,分类讨论得解.【题目详解】∵共线,∴,即,,,整理得,所以或,或或(舍去).∴三角形为直角三角形或等腰三角形.故选:D.【题目点拨】本题考查三角形形状的判断,考查向量共线的坐标表示,考查正弦定理,两角和的正弦公式,考查三角函数性质.解题时不能随便约分漏解.5、A【解题分析】
由正弦定理可得,再结合余弦定理求解即可.【题目详解】解:因为在△ABC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故选:A.【题目点拨】本题考查了正弦定理及余弦定理,重点考查了运算能力,属基础题.6、D【解题分析】
分别根据向量的平行、模、数量积即可解决。【题目详解】当为零向量时不满足,①错;当为零向量时④错,对于⑤:两个向量相乘,等于模相乘再乘以夹角的余弦值,与有可能夹角不一样或者的模不一样,两个向量相等要保证方向、模都相同才可以,因此选择D【题目点拨】本题主要考查了向量的共线,零向量。属于基础题。7、D【解题分析】
由题意得,当且仅当时,等号成立,所以至少有一个不小于,故选D.8、B【解题分析】
根据平面的斜线的定义,即可作出判定,得到答案.【题目详解】由题意,直线是平面的斜线,由斜线的定义可知与平面相交但不垂直的直线叫做平面的斜线,所以在平面内肯定不存在与直线平行的直线.故答案为:B【题目点拨】本题主要考查了直线与平面的位置关系的判定及应用,其中解答中熟记平面斜线的定义是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9、B【解题分析】
根据求出的范围,再由区间长度比即可得出结果.【题目详解】区间的长度为;由,解得,即,区间长度为,事件“”发生的概率是.故选B.【题目点拨】本题主要考查与长度有关的几何概型,熟记概率计算公式即可,属于基础题型.10、A【解题分析】
试题分析:利用余弦定理求出正方形面积;利用三角形知识得出四个等腰三角形面积;故八边形面积.故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式求出个三角形的面积;接下来利用余弦定理可求出正方形的边长的平方,进而得到正方形的面积,最后得到答案.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】
把向量,的夹角为60°,且,,代入平面向量的数量积公式,即可得到答案.【题目详解】由向量,的夹角为°,且,,则.故答案为1【题目点拨】本题考查了平面向量数量积的坐标表示,直接考查公式本身的直接应用,属于基础题.12、【解题分析】
把平方,将代入,化简即可得结果.【题目详解】因为,所以,,故答案为.【题目点拨】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).13、20【解题分析】
先由条件求出,算出,然后利用二次函数的知识求出即可【题目详解】设的公差为,由题意得即,①即,②由①②联立得所以故当时,取得最大值400故答案为:20【题目点拨】等差数列的是关于的二次函数,但要注意只能取正整数.14、【解题分析】
利用三角形的面积公式可求出的面积的值.【题目详解】由三角形的面积公式可得.故答案为:.【题目点拨】本题考查三角形面积的计算,熟练利用三角形的面积公式是计算的关键,考查计算能力,属于基础题.15、【解题分析】
由于角的终边上一点P落在直线上,可得,根据二倍角公式以及三角函数基本关系,可得,代入,可求得结果.【题目详解】因为角的终边上一点P落在直线上,所以,.故答案为:【题目点拨】本题考查同角三角函数的基本关系,巧用“1”是解决本题的关键.16、【解题分析】
由得,结合条件,即可求出,的值,代入求夹角公式,即可求解.【题目详解】由得与的夹角的余弦值为.【题目点拨】本题考查数量积的定义,公式的应用,求夹角公式的应用,计算量较大,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3)【解题分析】
如图,以为原点建立空间直角坐标系,依题意可得,又因为分别为和的中点,得.(Ⅰ)证明:依题意,可得为平面的一个法向量,,由此可得,,又因为直线平面,所以平面(Ⅱ),设为平面的法向量,则,即,不妨设,可得,设为平面的一个法向量,则,又,得,不妨设,可得因此有,于是,所以二面角的正弦值为.(Ⅲ)依题意,可设,其中,则,从而,又为平面的一个法向量,由已知得,整理得,又因为,解得,所以线段的长为.考点:直线和平面平行和垂直的判定与性质,二面角、直线与平面所成的角,空间向量的应用.18、(1),(2)或【解题分析】
(1)根据,,成等差数列,得到,解得答案.(2)讨论和两种情况,利用错位相减法计算得到答案.【题目详解】(1)因为是一个公比为q的等比数列,所以.因为,,成等差数列,所以即.解得,.(2)①若,又它的前4和,得,解得所以,因为,(),∴,,∴,∴②若,又它的前4和,即,因为,(),所以.【题目点拨】本题考查了等比数列的计算,错位相减法,意在考查学生对于数列公式方法的综合应用.19、(1)证明见解析;(2)【解题分析】
(1)如图所示,为中点,连接,证明为平行四边形得到答案.(2)分别以为轴建立直角坐标系,平面的法向量为,计算向量夹角得到答案.【题目详解】(1)如图所示,为中点,连接.为中点,N为PC的中点,故,,,故,且,故为平行四边形.故,平面,故平面PAB.(2)中点为,,故,故,底面ABCD,故,.分别以为轴建立直角坐标系,则,,,,.设平面的法向量为,则,即,取得到,故,故直线AN与平面PMN所成角的余弦值为.【题目点拨】本题考查了线面平行,线面夹角,意在考查学生的空间想象能力和计算能力.20、(1),当汽车以的速度行驶,能使得全称运输成本最小;(2).【解题分析】
(1)计算出汽车的行驶时间为小时,可得出全程运输成本为,其中,代入,,利用基本不等式求解;(2)注意到时,利用基本不等式取不到等号,转而利用双勾函数的单调性求解.【题目详解】(1)由题意可知,汽车从地到地所用时间为小时,全程成本为,.当,时,,当且仅当时取等号,所以,汽车应以的速度行驶,能使得全程行驶成本最小;(2)当,时,,由双勾函数的单调性可知,当时,有最小值,所以,汽车应以的速度行驶,才能使得全程运输成本最小.【题目点拨】本题考查基本不等式的应用,解题的关键就是建立函数模型,得出函数解析式,并通过基本不等式进行求解,考查学生数学应用能力,属于中等题.21、(1)0.15(2)2400(3)25人【解题分析】
(1)由频率分布直方图计算可得月收入在[3000,3500)内的频率;(2)分别计算小长方形的面积值,利用中位数的特点即可确定中位数的值;(3)首先确定10000人中月收入在[2500,3000]内的人数,然后结合分层抽样的特点可得应抽取的人数.【题目详解】(1)居民月收入在[3000,350
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年汽车维修工考试注意事项
- 六年级语文考前互助小组题及答案
- 汽车维修工考试内容的深度解读试题及答案
- 药物相互作用探讨试题及答案
- 2024年统计学考试技巧试题及答案
- 第2讲 匀变速直线运动的规律-2026版大一轮高考物理复习
- 古代文学形态的多样化与发展趋势试题及答案
- 2024年汽车美容行业发展政策试题及答案
- 2024年食品质检员考试案例分析及答案
- 二手车评估师法律法规知识试题及答案
- 江西省南昌中学2024-2025学年高一下学期3月月考地理试题(原卷版+解析版)
- 落实“215”专项行动:xx小学体育“加速度”
- 老年人60岁以上C1驾考三力测试题及答案
- 2020-2021学年江苏省南京外国语河西初级中学等三校七年级(下)期中数学试卷
- 第四单元《认识20~99》-2024-2025学年一年级数学下册单元检测卷(苏教版·2024新教材)
- 小学生航天知识普及课件
- 2025年河南经贸职业学院单招职业技能测试题库及答案一套
- 《自动驾驶技术》课件
- 部编版2025春六年级下册语文11《十六年前的回忆》 课件
- 财务大数据分析与可视化课件 项目3 快速实践Power BI
- DB3303T 059-2023 政务信息化项目软件开发费用测算规范
评论
0/150
提交评论