版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省咸阳市示范初中2024届数学高三上期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,四边形为正方形,延长至,使得,点在线段上运动.设,则的取值范围是()A. B. C. D.2.已知抛物线y2=4x的焦点为F,抛物线上任意一点P,且PQ⊥y轴交y轴于点Q,则的最小值为()A. B. C.l D.13.双曲线的渐近线方程为()A. B.C. D.4.已知函数的图象如图所示,则可以为()A. B. C. D.5.若x,y满足约束条件的取值范围是A.[0,6] B.[0,4] C.[6, D.[4,6.如图,在平行四边形中,对角线与交于点,且,则()A. B.C. D.7.已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为()A. B. C. D.8.若复数满足,则对应的点位于复平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.下列不等式成立的是()A. B. C. D.10.的展开式中的系数为()A.-30 B.-40 C.40 D.5011.设函数(,为自然对数的底数),定义在上的函数满足,且当时,.若存在,且为函数的一个零点,则实数的取值范围为()A. B. C. D.12.若与互为共轭复数,则()A.0 B.3 C.-1 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知函数函数,则不等式的解集为____.14.已知为双曲线:的左焦点,直线经过点,若点,关于直线对称,则双曲线的离心率为__________.15.已知函数,则过原点且与曲线相切的直线方程为____________.16.已知变量(m>0),且,若恒成立,则m的最大值________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角的对边分别为,且满足.(1)求角的大小;(2)若的面积为,求的周长的最小值.18.(12分)设都是正数,且,.求证:.19.(12分)如图,直线y=2x-2与抛物线x2=2py(p>0)交于M1,M2两点,直线y=p2与(1)求p的值;(2)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M20.(12分)已知数列满足,,数列满足.(Ⅰ)求证数列是等比数列;(Ⅱ)求数列的前项和.21.(12分)已知函数(1)求f(x)的单调递增区间;(2)△ABC内角A、B、C的对边分别为a、b、c,若且A为锐角,a=3,sinC=2sinB,求△ABC的面积.22.(10分)已知函数.(1)求不等式的解集;(2)若关于的不等式在区间内无解,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
以为坐标原点,以分别为x轴,y轴建立直角坐标系,利用向量的坐标运算计算即可解决.【详解】以为坐标原点建立如图所示的直角坐标系,不妨设正方形的边长为1,则,,设,则,所以,且,故.故选:C.【点睛】本题考查利用向量的坐标运算求变量的取值范围,考查学生的基本计算能力,本题的关键是建立适当的直角坐标系,是一道基础题.2、A【解析】
设点,则点,,利用向量数量积的坐标运算可得,利用二次函数的性质可得最值.【详解】解:设点,则点,,,,当时,取最小值,最小值为.故选:A.【点睛】本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.3、A【解析】
将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【详解】双曲线得,则其渐近线方程为,整理得.故选:A【点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.4、A【解析】
根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出.【详解】首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;其次,在剩下的3个选项,对其在上的零点个数进行判断,在上无零点,不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断,在上单调递减,不符合题意,排除C.故选:A.【点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题.5、D【解析】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选D.6、C【解析】
画出图形,以为基底将向量进行分解后可得结果.【详解】画出图形,如下图.选取为基底,则,∴.故选C.【点睛】应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面的一组基底,基底可以有无穷多组,在解决具体问题时,合理选择基底会给解题带来方便.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.7、B【解析】
利用复数的除法运算化简z,复数在复平面中对应的点到原点的距离为利用模长公式即得解.【详解】由题意知复数在复平面中对应的点到原点的距离为故选:B【点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.8、D【解析】
利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;【详解】,对应的点,对应的点位于复平面的第四象限.故选:D.【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.9、D【解析】
根据指数函数、对数函数、幂函数的单调性和正余弦函数的图象可确定各个选项的正误.【详解】对于,,,错误;对于,在上单调递减,,错误;对于,,,,错误;对于,在上单调递增,,正确.故选:.【点睛】本题考查根据初等函数的单调性比较大小的问题;关键是熟练掌握正余弦函数图象、指数函数、对数函数和幂函数的单调性.10、C【解析】
先写出的通项公式,再根据的产生过程,即可求得.【详解】对二项式,其通项公式为的展开式中的系数是展开式中的系数与的系数之和.令,可得的系数为;令,可得的系数为;故的展开式中的系数为.故选:C.【点睛】本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.11、D【解析】
先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【详解】构造函数,因为,所以,所以为奇函数,当时,,所以在上单调递减,所以在R上单调递减.因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因为当时,,所以函数在时单调递减,由选项知,,又因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D.【点睛】本题主要考查函数与方程的综合问题,难度较大.12、C【解析】
计算,由共轭复数的概念解得即可.【详解】,又由共轭复数概念得:,.故选:C【点睛】本题主要考查了复数的运算,共轭复数的概念.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,,所以,所以的解集为。点睛:本题考查绝对值不等式。本题先对绝对值函数进行分段处理,再得到的解析式,求得的分段函数解析式,再解不等式即可。绝对值函数一般都去绝对值转化为分段函数处理。14、【解析】
由点,关于直线对称,得到直线的斜率,再根据直线过点,可求出直线方程,又,中点在直线上,代入直线的方程,化简整理,即可求出结果.【详解】因为为双曲线:的左焦点,所以,又点,关于直线对称,,所以可得直线的方程为,又,中点在直线上,所以,整理得,又,所以,故,解得,因为,所以.故答案为【点睛】本题主要考查双曲线的简单性质,先由两点对称,求出直线斜率,再由焦点坐标求出直线方程,根据中点在直线上,即可求出结果,属于常考题型.15、【解析】
设切点坐标为,利用导数求出曲线在切点的切线方程,将原点代入切线方程,求出的值,于此可得出所求的切线方程.【详解】设切点坐标为,,,,则曲线在点处的切线方程为,由于该直线过原点,则,得,因此,则过原点且与曲线相切的直线方程为,故答案为.【点睛】本题考查导数的几何意义,考查过点作函数图象的切线方程,求解思路是:(1)先设切点坐标,并利用导数求出切线方程;(2)将所过点的坐标代入切线方程,求出参数的值,可得出切点的坐标;(3)将参数的值代入切线方程,可得出切线的方程.16、【解析】
在不等式两边同时取对数,然后构造函数f(x)=,求函数的导数,研究函数的单调性即可得到结论.【详解】不等式两边同时取对数得,即x2lnx1<x1lnx2,又即成立,设f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),则函数f(x)在(0,m)上为增函数,函数的导数,由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函数f(x)的最大增区间为(0,e),则m的最大值为e故答案为:e【点睛】本题考查函数单调性与导数之间的应用,根据条件利用取对数得到不等式,从而可构造新函数,是解决本题的关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)因为,所以,由余弦定理得,化简得,可得,解得,又因为,所以.(6分)(2)因为,所以,则(当且仅当时,取等号).由(1)得(当且仅当时,取等号),解得.所以(当且仅当时,取等号),所以的周长的最小值为.18、证明见解析【解析】
利用比较法进行证明:把代数式展开、作差、化简可得,,可证得成立,同理可证明,由此不等式得证.【详解】证明:因为,,所以,∴成立,又都是正数,∴,①同理,∴.【点睛】本题考查利用比较法证明不等式;考查学生的逻辑推理能力和运算求解能力;把差变形为因式乘积的形式是证明本题的关键;属于中档题。19、(1)p=4;(2)OA⋅【解析】试题分析:(1)联立直线的方程和抛物线的方程y=2x-2x2=2py,化简写出根与系数关系,由于直线y=p2平分∠M1FM2,所以kM1F+kM2F=0,代入点的坐标化简得4-(2+p2)⋅x试题解析:(1)由y=2x-2x2=2py设M1(x1,因为直线y=p2平分∠M所以y1-p所以4-(2+p2)⋅x1+x(2)由(1)知抛物线方程为x2=8y,且x1+x设M3(x3,x328所以x2+x整理得:x2由B,M3,②式两边同乘x2得:x即:16x由①得:x2x3即:16(x2+所以OA⋅考点:直线与圆锥曲线的位置关系.【方法点晴】本题考查直线与抛物线的位置关系.阅读题目后明显发现,所有的点都是由直线和抛物线相交或者直线与直线相交所得.故第一步先联立y=2x-2x2=2py,相当于得到M1,M2的坐标,但是设而不求.根据直线y=p220、(Ⅰ)见证明;(Ⅱ)【解析】
(Ⅰ)利用等比数列的定义结合得出数列是等比数列(Ⅱ)数列是“等比-等差”的类型,利用分组求和即可得出前项和.【详解】解:(Ⅰ)当时,,故.当时,,则,,数列是首项为,公比为的等比数列.(Ⅱ)由(Ⅰ)得,,,.【点睛】(Ⅰ)证明数列是等比数列可利用定义法得出(Ⅱ)采用分组求和:把一个数列分成几个可以直接求和的数列.21、(1)(2)【解析】
(1)利用降次公式、辅助角公式化简解析式,根据三角函数单调区间的求法,求得的单调递增区间.(2)先由求得,利用正弦定理得到,结合余弦定理列方程,求得,由此求得三角形的面积.【详解】(1)函数,,由,得.所以的单调递增区间为.(2)因为且为锐角,所以.由及正弦定理可得,又,由余弦定理可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高效商务电脑采购协议
- 2024涉及房产分割的婚姻解除协议
- 2024年担保协议模板条款详解
- 2024年度煤炭市场居间协议模板文件
- 2024年度企业运营保密协议样本
- 2024年木材批发买卖协议范例
- 办公场地租赁协议:甲级写字楼长租协议
- 研究生教育治理的未来发展趋势
- 数智驱动教育治理重构的潜在风险与应对策略
- 2024年度混凝土建设施工合作协议
- 【公开课】《农业专题复习》【课件】
- 第7课《大雁归来》课件(共15张ppt) 部编版语文八年级下册
- 培训的方式和方法课件
- 三年级下册口算天天100题(A4打印版)
- 三基选择题(东南大学出版社)
- 2021年大唐集团招聘笔试试题及答案
- DBJ53/T-39-2020 云南省民用建筑节能设计标准
- 2022版义务教育数学课程标准解读课件PPT模板
- 实验五 PCR扩增课件
- 马拉松运动医疗支援培训课件
- 中医药宣传手册
评论
0/150
提交评论