2024届上海市北虹、上理工附中、同二、光明、六十、卢高、东昌等七校数学高一第二学期期末联考试题含解析_第1页
2024届上海市北虹、上理工附中、同二、光明、六十、卢高、东昌等七校数学高一第二学期期末联考试题含解析_第2页
2024届上海市北虹、上理工附中、同二、光明、六十、卢高、东昌等七校数学高一第二学期期末联考试题含解析_第3页
2024届上海市北虹、上理工附中、同二、光明、六十、卢高、东昌等七校数学高一第二学期期末联考试题含解析_第4页
2024届上海市北虹、上理工附中、同二、光明、六十、卢高、东昌等七校数学高一第二学期期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市北虹、上理工附中、同二、光明、六十、卢高、东昌等七校数学高一第二学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列满足,,则数列的前10项和为()A. B. C. D.2.已知向量,满足且,若向量在向量方向上的投影为,则()A. B. C. D.3.设为等差数列的前项和,.若,则()A.的最大值为 B.的最小值为 C.的最大值为 D.的最小值为4.已知,则三个数、、由小到大的顺序是()A. B.C. D.5.方程的解所在的区间为()A. B.C. D.6.在区间上随机地取一个数.则的值介于0到之间的概率为().A. B. C. D.7.三边,满足,则三角形是()A.锐角三角形 B.钝角三角形 C.等边三角形 D.直角三角形8.已知点,则P在平面直角坐标系中位于A.第一象限 B.第二象限 C.第三象限 D.第四象限9.在空间四边形中,分别是的中点.若,且与所成的角为,则四边形的面积为()A. B. C. D.10.某市在“一带一路”国际合作高峰论坛前夕,在全市高中学生中进行“我和‘一带一路’”的学习征文,收到的稿件经分类统计,得到如图所示的扇形统计图.又已知全市高一年级共交稿2000份,则高三年级的交稿数为()A.2800 B.3000 C.3200 D.3400二、填空题:本大题共6小题,每小题5分,共30分。11.命题“数列的前项和”成立的充要条件是________.(填一组符合题意的充要条件即可,所填答案中不得含有字母)12.若向量与平行.则__.13.已知为等差数列,,前n项和取得最大值时n的值为___________.14.已知圆Ω过点A(5,1),B(5,3),C(﹣1,1),则圆Ω的圆心到直线l:x﹣2y+1=0的距离为_____.15.方程在区间内解的个数是________16.等比数列中首项,公比,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,,.(1)求数列的通项公式;(2)设,求数列的前项和.18.如图,是的直径,所在的平面,是圆上一点,,.(1)求证:平面平面;(2)求直线与平面所成角的正切值.19.某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付酬方案:第一种,每天支付元,没有奖金;第二种,每天的底薪元,另有奖金.第一天奖金元,以后每天支付的薪酬中奖金比前一天的奖金多元;第三种,每天无底薪,只有奖金.第一天奖金元,以后每天支付的奖金是前一天的奖金的倍.(1)工作天,记三种付费方式薪酬总金额依次为、、,写出、、关于的表达式;(2)该学生在暑假期间共工作天,他会选择哪种付酬方式?20.已知α为锐角,且tanα=(I)求tanα+(II)求5sin21.设公差不为0的等差数列中,,且构成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若数列的前项和满足:,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

由判断出数列是等比数列,再求出,利用等比数列前项和公式求解即可.【题目详解】由,得,所以数列是以为公比的等比数列,又,所以,由等比数列前项和公式,.故选:C【题目点拨】本题主要考查等比数列的定义和等比数列前项和公式的应用,考查学生的计算能力,属于基础题.2、A【解题分析】由,即,所以,由向量在向量方向上的投影为,则,即,所以,故选A.3、C【解题分析】

由已知条件推导出(n2﹣n)d<2n2d,从而得到d>0,所以a1<0,a8>0,由此求出数列{Sn}中最小值是S1.【题目详解】∵(n+1)Sn<nSn+1,∴Sn<nSn+1﹣nSn=nan+1即na1na1+n2d,整理得(n2﹣n)d<2n2d∵n2﹣n﹣2n2=﹣n2﹣n<0∴d>0∵1<0∴a1<0,a8>0数列的前1项为负,故数列{Sn}中最小值是S1故选C.【题目点拨】本题考查等差数列中前n项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.4、C【解题分析】

比较三个数、、与的大小关系,再利用指数函数的单调性可得出、的大小,可得出这三个数的大小关系.【题目详解】,,,,且,函数为减函数,所以,,即,,因此,,故选C.【题目点拨】本题考查指数幂的大小关系,常用的方法有如下几种:(1)底数相同,指数不同,利用同底数的指数函数的单调性来比较大小;(2)指数相同,底数不同,利用同指数的幂函数的单调性来比较大小;(3)底数和指数都不相同时,可以利用中间值法来比较大小.5、B【解题分析】试题分析:由题意得,设函数,则,所以,所以方程的解所在的区间为,故选B.考点:函数的零点.6、D【解题分析】

由,得.由函数的图像知,使的值介于0到之间的落在和之内.于是,所求概率为.故答案为D7、C【解题分析】

由基本不等式得出,将三个不等式相加得出,由等号成立的条件可判断出的形状.【题目详解】为三边,,由基本不等式可得,将上述三个不等式相加得,当且仅当时取等号,所以,是等边三角形,故选C.【题目点拨】本题考查三角形形状的判断,考查基本不等式的应用,利用基本不等式要注意“一正、二定、三相等”条件的应用,考查推理能力,属于中等题.8、B【解题分析】

利用特殊角的三角函数值的符号得到点的坐标,直接判断点所在象限即可.【题目详解】,.在平面直角坐标系中位于第二象限.故选B.【题目点拨】本题考查了三角函数值的符号,考查了三角函数的诱导公式的应用,是基础题.9、A【解题分析】

连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=BD.同理,FG∥BD,且FG=BD,所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.因为AC=BD=a,AC与BD所成的角为60°所以EF=EH.所以四边形EFGH为菱形,∠EFG=60°.∴四边形EFGH的面积是2××()2=a2故答案为a2,故选A.考点:本题主要是考查的知识点简单几何体和公理四,公理四:和同一条直线平行的直线平行,证明菱形常用方法是先证明它是平行四边形再证明邻边相等,以及面积公式属于基础题.点评:解决该试题的关键是先证明四边形EFGH为菱形,然后说明∠EFG=60°,最后根据三角形的面积公式即可求出所求.10、D【解题分析】

先求出总的稿件的数量,再求出高三年级交稿数占总交稿数的比例,再求高三年级的交稿数.【题目详解】高一年级交稿2000份,在总交稿数中占比,所以总交稿数为,高二年级交稿数占总交稿数的,所以高三年级交稿数占总交稿数的,所以高三年级交稿数为.故选D【题目点拨】本题主要考查扇形统计图的有关计算,意在考查学生对该知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、数列为等差数列且,.【解题分析】

根据题意,设该数列为,由数列的前项和公式分析可得数列为等差数列且,,反之验证可得成立,综合即可得答案.【题目详解】根据题意,设该数列为,若数列的前项和,则当时,,当时,,当时,符合,故有数列为等差数列且,,反之当数列为等差数列且,时,,;故数列的前项和”成立的充要条件是数列为等差数列且,,故答案为:数列为等差数列且,.【题目点拨】本题考查充分必要条件的判定,关键是掌握充分必要条件的定义,属于基础题.12、【解题分析】

由题意利用两个向量共线的性质,两个向量坐标形式的运算法则,求得的值.【题目详解】由题意,向量与平行,所以,解得.故答案为.【题目点拨】本题主要考查了两个向量共线的性质,两个向量坐标形式的运算,着重考查了推理与计算能力,属于基础题.13、20【解题分析】

先由条件求出,算出,然后利用二次函数的知识求出即可【题目详解】设的公差为,由题意得即,①即,②由①②联立得所以故当时,取得最大值400故答案为:20【题目点拨】等差数列的是关于的二次函数,但要注意只能取正整数.14、【解题分析】

求得线段和线段的垂直平分线,求这两条垂直平分线的交点即求得圆的圆心,在求的圆心到直线的距离.【题目详解】∵A(5,1),B(5,3),C(﹣1,1),∴AB的中点坐标为(5,2),则AB的垂直平分线方程为y=2;BC的中点坐标为(2,2),,则BC的垂直平分线方程为y﹣2=﹣3(x﹣2),即3x+y﹣8=1.联立,得.∴圆Ω的圆心为Ω(2,2),则圆Ω的圆心到直线l:x﹣2y+1=1的距离为d.故答案为:【题目点拨】本小题主要考查根据圆上点的坐标求圆心坐标,考查点到直线的距离公式,属于基础题.15、4.【解题分析】分析:通过二倍角公式化简得到,进而推断或,进而求得结果.详解:,所以或,因为,所以或或或,故解的个数是4.点睛:该题考查的是有关方程解的个数问题,在解题的过程中,涉及到的知识点有正弦的倍角公式,方程的求解问题,注意一定不要两边除以,最后求得结果.16、9【解题分析】

根据等比数列求和公式,将进行转化,然后得到关于和的等式,结合,讨论出和的值,得到答案.【题目详解】因为等比数列中首项,公比,所以成首项为,公比为的等比数列,共项,所以整理得因为所以可得,等式右边为整数,故等式左边也需要为整数,则应是的约数,所以可得,所以,当时,得,此时当时,得,此时当时,得,此时,所以,故答案为:.【题目点拨】本题考查等比数列求和的基本量运算,涉及分类讨论的思想,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)由,构造是以为首项,为公比等比数列,利用等比数列的通项公式可得结果;(2)由(1)得,利用裂项相消可求.【题目详解】(1)由得:,即,且数列是以为首项,为公比的等比数列数列的通项公式为:(2)由(1)得:【题目点拨】关系式可构造为,中档题。18、(1)证明见解析;(2)2.【解题分析】

(1)首先证明平面,利用线面垂直推出平面平面;(2)找到直线与平面所成角所在三角形,利用三角形边角关系求解即可.【题目详解】(1)∵是直径,∴,即,又∵所在的平面,在所在的平面内,∴,∴平面,又平面,∴平面平面;(2)∵平面,∴直线与平面所成角即,设,∵,∴,∴,∴.【题目点拨】本题主要考查了面面垂直的证明,直线与平面所成角的求解,属于一般题.19、(1),,;(2)第三种,理由见解析.【解题分析】

(1)三种支付方式每天支付的金额依次为数列、、,可知数列为常数数列,数列是以为首项,以为公差的等差数列,数列是以为首项,以为公比的等比数列,利用等差数列和等比数列求和公式可计算出、、关于的表达式;(2)利用(1)中的结论,计算出、、的值,比较大小后可得出结论.【题目详解】(1)设三种支付方式每天支付的金额依次为数列、、,它们的前项和分别为、、,第一种付酬方式每天所付金额组成数列为常数列,且,所以;第二种付酬方式每天所付金额组成数列是以为首项,以为公差的等差数列,所以;第三种付酬方式每天所付金额组成数列是以为首项,以为公比的等比数列,所以;(2)由(1)知,当时,,,,则.因此,该学生在暑假期间共工作天,选第三种付酬方式较好.【题目点拨】本题考查等差数列和等比数列的应用,涉及等差数列和等比数列求和公式的应用,考查计算能力,属于中等题.20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论