




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省杭州外国语学校高一数学第二学期期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则下列结论错误的是()A.B.甲得分的方差是736C.乙得分的中位数和众数都为26D.乙得分的方差小于甲得分的方差2.在x轴上的截距为2且倾斜角为135°的直线方程为().A.y=-x+2 B.y=-x-2 C.y=x+2 D.y=x-23.直线(,)过点(-1,-1),则的最小值为()A.9 B.1 C.4 D.104.在中,内角所对的边分别是.已知,,,则A. B. C. D.5.从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球” B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球” D.“至少有一个黑球”与“都是红球”6.在等差数列中,若前项的和,,则()A. B. C. D.7.若,则下列结论成立的是()A. B.C.的最小值为2 D.8.某社区义工队有24名成员,他们年龄的茎叶图如下表所示,先将他们按年龄从小到大编号为1至24号,再用系统抽样方法抽出6人组成一个工作小组,则这个小组年龄不超过55岁的人数为()3940112551366778889600123345A.1 B.2 C.3 D.49.已知等差数列的公差为2,若成等比数列,则()A. B. C. D.10.已知数列满足,则()A.2 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足,则等于______.12.若,则_______.13.函数的值域为______.14.如图所示,E,F分别是边长为1的正方形的边BC,CD的中点,将其沿AE,AF,EF折起使得B,D,C三点重合.则所围成的三棱锥的体积为___________.15.如图,为测量山高,选择和另一座山的山顶为测量观测点,从点测得的仰角,点的仰角以及;从点测得;已知山高,则山高__________.16.某校老年、中年和青年教师的人数分别为90,180,160,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有32人,则抽取的样本中老年教师的人数为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,再从这20人中年龄在和的人群里,随机选取2人各赠送一部华为手机,求这2名市民年龄都在内的概率.18.已知函数.(1)求函数的值域和单调减区间;(2)已知为的三个内角,且,,求的值.19.某工厂要制造A种电子装置45台,B种电子装置55台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2m2,可做A、B的外壳分别为3个和5个,乙种薄钢板每张面积3m2,可做A、B的外壳分别为6个和6个,求两种薄钢板各用多少张,才能使总的面积最小.20.将边长分别为、、、…、、、…的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第个、第个、……、第个阴影部分图形.设前个阴影部分图形的面积的平均值为.记数列满足,(1)求的表达式;(2)写出,的值,并求数列的通项公式;(3)定义,记,且恒成立,求的取值范围.21.如图所示,是正三角形,和都垂直于平面,且,,是的中点,求证:(1)平面;(2).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
根据题意,依次分析选项,综合即可得答案.【题目详解】根据题意,依次分析选项:对于A,甲得分的极差为32,30+x﹣6=32,解得:x=8,A正确,对于B,甲得分的平均值为,其方差为,B错误;对于C,乙的数据为:12、25、26、26、31,其中位数、众数都是26,C正确,对于D,乙得分比较集中,则乙得分的方差小于甲得分的方差,D正确;故选:B.【题目点拨】本题考查茎叶图的应用,涉及数据极差、平均数、中位数、众数、方差的计算,属于基础题.2、A【解题分析】直线的斜率为tan135°=-1,由点斜式求得直线的方程为y=-x+b,将截据y=0,x=2代入方程,解得b=2,所以,可得y=-x+2,故答案为A3、A【解题分析】
将点的坐标代入直线方程:,再利用乘1法求最值【题目详解】将点的坐标代入直线方程:,,当且仅当时取等号【题目点拨】已知和为定值,求倒数和的最小值,利用乘1法求最值。4、B【解题分析】
由已知三边,利用余弦定理可得,结合,为锐角,可得,利用三角形内角和定理即可求的值.【题目详解】在中,,,,由余弦定理可得:,,故为锐角,可得,,故选.【题目点拨】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.5、C【解题分析】分析:利用对立事件、互斥事件的定义求解.详解:从装有两个红球和三个黑球的口袋里任取两个球,在A中,“至少有一个黑球”与“都是黑球”能同时发生,不是互斥事件,故A错误;在B中,“至少有一个黑球”与“至少有一个红球”能同时发生,不是互斥事件,故B错误;在C中,“恰好有一个黑球”与“恰好有两个黑球”不能同时发生,但能同时不发生,是互斥而不对立的两个事件,故C正确;在D中,“至少有一个黑球”与“都是红球”是对立事件,故D错误.故答案为:C点睛:(1)本题主要考查互斥事件和对立事件的定义,意在考查学生对这些基础知识的掌握水平.(2)互斥事件指的是在一次试验中,不可能同时发生的两个事件,对立事件指的是在一次试验中,不可能同时发生的两个事件,且在一次试验中,必有一个发生的两个事件.注意理解它们的区别和联系.6、C【解题分析】试题分析:.考点:等差数列的基本概念.7、D【解题分析】
由,根据不等式乘方性质可判断A不成立;由指数函数单调性可判断B不成立;由基本不等式可判断C不成立,D成立.【题目详解】对于A,若,则有,故A不成立;对于B,根据指数函数单调性,函数单调递减,,故B不成立;对于C,由基本不等式,a=b取得最小值,由不能取得最小值,故C不成立;则D能成立.故选:D.【题目点拨】本题考查基本不等式、不等式的基本性质,考查不等式性质的应用,属于基础题.8、B【解题分析】
求出样本间隔,结合茎叶图求出年龄不超过55岁的有8人,然后进行计算即可.【题目详解】解:样本间隔为,年龄不超过55岁的有8人,则这个小组中年龄不超过55岁的人数为人.故选:.【题目点拨】本题主要考查茎叶图以及系统抽样的应用,求出样本间隔是解决本题的关键,属于基础题.9、B【解题分析】
通过成等比数列,可以列出一个等式,根据等差数列的性质,可以把该等式变成关于的方程,解这个方程即可.【题目详解】因为成等比数列,所以有,又因为是公差为2的等差数列,所以有,故本题选B.【题目点拨】本题考查了等比中项的性质,考查了等差数列的性质,考查了数学运算能力.10、B【解题分析】
利用数列的递推关系式,逐步求解数列的即可.【题目详解】解:数列满足,,所以,.故选:B.【题目点拨】本题主要考查数列的递推关系式的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、15【解题分析】
先由,可求出,然后由,代入已知递推公式即可求解。【题目详解】故答案为15.【题目点拨】本题考查是递推公式的应用,是一道基础题。12、【解题分析】
对两边平方整理即可得解.【题目详解】由可得:,整理得:所以【题目点拨】本题主要考查了同角三角函数基本关系及二倍角的正弦公式,考查观察能力及转化能力,属于较易题.13、【解题分析】
由反三角函数的性质得到,即可求得函数的值域.【题目详解】由,则,,又,,即,函数的值域为.故答案:.【题目点拨】本题考查反三角函数的性质及其应用,属于基础题.14、【解题分析】
根据折叠后不变的垂直关系,结合线面垂直判定定理可得到为三棱锥的高,由此可根据三棱锥体积公式求得结果.【题目详解】设点重合于点,如下图所示:,,又平面,平面,即为三棱锥的高故答案为:【题目点拨】本题考查立体几何折叠问题中的三棱锥体积的求解问题,处理折叠问题的关键是能够明确折叠后的不变量,即不变的垂直关系和长度关系.15、【解题分析】在△ABC中,,,在△AMC中,,由正弦定理可得,解得,在Rt△AMN中.16、【解题分析】
根据分层抽样的定义建立比例关系,即可得到答案。【题目详解】设抽取的样本中老年教师的人数为,学校所有的中老年教师人数为270人由分层抽样的定义可知:,解得:故答案为【题目点拨】本题考查分层抽样,考查学生的计算能力,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解题分析】分析:(1)直接利用频率分布直方图的平均值和中位数公式求解.(2)利用古典概型求这2名市民年龄都在内的概率.详解:(Ⅰ)平均值的估计值:中位数的估计值:因为,所以中位数位于区间年龄段中,设中位数为,所以,.(Ⅱ)用分层抽样的方法,抽取的20人,应有4人位于年龄段内,记为,2人位于年龄段内,记为.现从这6人中随机抽取2人,设基本事件空间为,则设2名市民年龄都在为事件A,则,所以.点睛:(1)本题主要考查频率分布直方图,考查平均值和中位数的计算和古典概型,意在考查学生对这些基础知识的掌握能力和基本的运算能力.(2)先计算出每个小矩形的面积,通过解方程找到左边面积为0.5的点P,点P对应的数就是中位数.一般利用平均数的公式计算.其中代表第个矩形的横边的中点对应的数,代表第个矩形的面积.18、(1),;(2).【解题分析】
(1)将函数化简,利用三角函数的取值范围的单调性得到答案.(2)通过函数计算,,再计算代入数据得到答案.【题目详解】(1)∵且∴故所求值域为由得:所求减区间:;(2)∵是的三个内角,,∴∴又,即又∵,∴,故,故.【题目点拨】本题考查了三角函数的最值,单调性,角度的大小,意在考查学生对于三角函数公式性质的灵活运用.19、甲、乙两种薄钢板各5张,能保证制造A、B的两种外壳的用量,同时又能使用料总面积最小.【解题分析】
本题可先将甲种薄钢板设为x张,乙种薄钢板设为y张,然后根据题意,得出两个不等式关系,也就是3x+6y≥45、5x+6y≥55以及薄钢板的总面积是z=2x+3y,然后通过线性规划画出图像并求出总面积z=2x+3y的最小值,最后得出结果.【题目详解】设甲种薄钢板x张,乙种薄钢板y张,则可做A种产品外壳3x+6y个,B种产品外壳5x+6y个,由题意可得3x+6y≥455x+6y≥55x≥0,y≥0,薄钢板的总面积是可行域的阴影部分如图所示,其中l1:3x+6y=45、l2:因目标函数z=2x+3y在可行域上的最小值在区域边界的A5此时z的最小值为2×5+3×5=25即甲、乙两种薄钢板各5张,能保证制造A、【题目点拨】(1)利用线性规划求目标函数最值的步骤①作图:画出约束条件所确定的平面区域和目标函数所表示的平面直角坐标系中的任意一条直线l;②平移:将l平行移动,以确定最优解所对应的点的位置.有时需要进行目标函数l和可行域边界的斜率的大小比较;③求值:解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.(2)用线性规划解题时要注意z的几何意义.20、(1);(2),,;(3).【解题分析】
(1)根据题意,分别求出每一个阴影部分图形的面积,即可得到前个阴影部分图形的面积的平均值;(2)依据递推式,结合分类讨论思想,即可求出数列的通项公式;(3)先求出的表达式,再依题意得到,分类讨论不等式恒成立的条件,取其交集,即得所求范围。【题目详解】(1)由题意有,第一个阴影部分图形面积是:;第二个阴影部分图形面积是:;第三个阴影部分图形面积是:;所以第个阴影部分图形面积是:;故;(2)由(1)知,,,所以,,当时,当时,,综上,数列的通项公式为,。(3)由(2)知,,,由题意可得,恒成立,①当时,,即,所以,②当时,,即,所以,③当时,,即,所以,综上,。【题目点拨】本题主要考查数列的通项公式求法,数列不等式恒成立问题的解法以及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 隧道烘干机行业市场发展及发展趋势与投资战略研究报告
- 2025年热轧无纺布浆点布项目可行性研究报告
- 2025年直针项目可行性研究报告
- 2025年有纺土工布行业深度研究分析报告
- 人民医院CT大型医用设备配置可靠可行性研究报告
- 中国PC机液晶显示器项目投资可行性研究报告
- 玻镁板生产项目可行性研究报告(目录)
- 2024年幼儿教育行业发展潜力预测及投资战略研究报告
- 购买医疗设备可行性报告
- 2023-2028年中国浙江省服装行业市场调查研究及发展战略规划报告
- 城市自来水厂课程设计
- 重庆市2024年小升初语文模拟考试试卷(含答案)
- 2024智慧城市数据采集标准规范
- 【人教版】《劳动教育》七上 劳动项目一 疏通厨房下水管道 课件
- 2024特斯拉的自动驾驶系统FSD发展历程、技术原理及未来展望分析报告
- 2024-2030年中国银行人工智能行业市场深度调研及发展趋势与投资前景研究报告
- 五届全国智能制造应用技术技能大赛数字孪生应用技术员(智能制造控制技术方向)赛项实操样题
- 中国银行中银数字服务(南宁)有限公司招聘笔试真题2023
- 2024七年级英语下册 Module 1 Lost and found教案(新版)外研版
- 2024年公共卫生基本知识考试题库(附含答案)
- 如何正确运用逻辑推理和论证方法撰写文章
评论
0/150
提交评论