




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆綦江中学七校联考2024届高一数学第二学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,成等差数列,,则的形状为()A.直角三角形 B.等腰直角三角形C.等腰三角形 D.等边三角形2.如图,两点为山脚下两处水平地面上的观测点,在两处观察点观察山顶点的仰角分别为,若,,且观察点之间的距离比山的高度多100米,则山的高度为()A.100米 B.110米 C.120米 D.130米3.已知:,则()A. B. C. D.4.某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.5.等比数列中,,,则公比等于()A.2 B.3 C. D.6.将函数的图象上各点沿轴向右平移个单位长度,所得函数图象的一个对称中心为()A. B. C. D.7.在中,内角A,B,C的对边分别为a,b,c,若a,b,c依次成等差数列,,,依次成等比数列,则的形状为()A.等边三角形 B.等腰直角三角形C.钝角三角形 D.直角边不相等的直角三角形8.设,,,则的最小值为()A.2 B.4 C. D.9.若函数有零点,则实数的取值范围为()A. B. C. D.10.已知圆,直线,点在直线上.若存在圆上的点,使得(为坐标原点),则的取值范围是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数在区间上的最大值为,则的值是_____________.12.在等比数列中,,公比,若,则的值为.13.函数的最小正周期为________.14.已知等比数列中,,,若数列满足,则数列的前项和=________.15.等差数列前项和为,已知,,则_____.16.函数,的值域是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在数列中,,,数列的前项和为,且.(1)证明:数列是等差数列.(2)若对恒成立,求的取值范围.18.已知向量,向量,向量,记与的夹角为.(Ⅰ)求(Ⅱ)求向量与向量的夹角的取值范围.19.锐角三角形的内角A,B,C的对边分别为a,b,c,且.(1)求A;(2)若,,求面积.20.在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标.21.已知分别为内角的对边试从下列①②条件中任选一个作为已知条件并完成下列(1)(2)两问的解答①;②.(1)求角(2)若,,求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
根据等差中项以及余弦定理即可.【题目详解】因为,,成等差数列,得为直角三角形为等腰直角三角形,所以选择B【题目点拨】本题主要考查了等差中项和余弦定理,若为等差数列,则,属于基础题.2、A【解题分析】
设山的高度为,求出AB=2x,根据,求出山的高度.【题目详解】设山的高度为,如图,由,有.在中,,有,又由观察点之间的距离比山的高度多100,有.故山的高度为100.故选A【题目点拨】本题主要考查解三角形的实际应用,意在考查学生对该知识的理解掌握水平,属于基础题.3、A【解题分析】
观察已知角与待求的角之间的特殊关系,运用余弦的二倍角公式和诱导公式求解.【题目详解】令,则,所以,所以,故选A.【题目点拨】本题关键在于观察出已知角与待求的角之间的特殊关系,属于中档题.4、D【解题分析】
先还原几何体,再根据形状求表面积.【题目详解】由三视图知,该几何体的直观图如图所示,其表面积为,故选.【题目点拨】本题考查三视图以及几何体表面积,考查空间想象能力以及基本求解能力,属中档题.5、A【解题分析】
由题意利用等比数列的通项公式,求出公比的值.【题目详解】解:等比数列中,,,,则公比,故选:.【题目点拨】本题主要考查等比数列的通项公式的应用,属于基础题.6、A【解题分析】
先求得图象变换后的解析式,再根据正弦函数对称中心,求出正确选项.【题目详解】向右平移的单位长度,得到,由解得,当时,对称中心为,故选A.【题目点拨】本小题主要考查三角函数图象变换,考查三角函数对称中心的求法,属于基础题.7、A【解题分析】
根据a,b,c依次成等差数列,,,依次成等比数列,利用等差、等比中项的性质可知,根据基本不等式求得a=c,判断出a=b=c,推出结果.【题目详解】由a,b,c依次成等差数列,有2b=a+c(1)由,,成等比数列,有(2),由(1)(2)得,又根据,当a=c时等号成立,∴可得a=c,∴,综上可得a=b=c,所以△ABC为等边三角形.故选:A.【题目点拨】本题考查三角形的形状判断,结合等差、等比数列性质及基本不等式关系可得三边关系,从而求解,考查综合分析能力,属于中等题.8、D【解题分析】
利用基本不等式可得,再结合代入即可得出答案.【题目详解】解:∵,,,∴,∴,当且仅当即,时等号成立,∴,故选:D.【题目点拨】本题主要考查基本不等式求最值,要注意条件“一正二定三相等”,属于中档题.9、D【解题分析】
令,得,再令,得出,并构造函数,将问题转化为直线与函数在区间有交点,利用数形结合思想可得出实数的取值范围.【题目详解】令,得,,令,则,所以,,构造函数,其中,由于,,,所以,当时,直线与函数在区间有交点,因此,实数的取值范围是,故选D.【题目点拨】本题考查函数的零点问题,在求解含参函数零点的问题时,若函数中只含有单一参数,可以采用参变量分离法转化为参数直线与定函数图象的交点个数问题,难点在于利用换元法将函数解析式化简,考查数形结合思想,属于中等题.10、B【解题分析】
根据条件若存在圆C上的点Q,使得为坐标原点),等价即可,求出不等式的解集即可得到的范围【题目详解】圆O外有一点P,圆上有一动点Q,在PQ与圆相切时取得最大值.
如果OP变长,那么可以获得的最大值将变小.可以得知,当,且PQ与圆相切时,,
而当时,Q在圆上任意移动,存在恒成立.
因此满足,就能保证一定存在点Q,使得,否则,这样的点Q是不存在的,
点在直线上,,即
,
,
计算得出,,
的取值范围是,
故选B.考点:正弦定理、直线与圆的位置关系.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
利用同角三角函数平方关系,易将函数化为二次型的函数,结合余弦函数的性质,及函数在上的最大值为1,易求出的值.【题目详解】函数又函数在上的最大值为1,≤0,又,且在上单调递增,所以即.故答案为:【题目点拨】本题考查的知识点是三角函数的最值,其中利用同角三角函数平方关系,将函数化为二次型的函数,是解答本题的关键,属于中档题.12、1【解题分析】
因为,,故答案为1.考点:等比数列的通项公式.13、.【解题分析】
根据正切型函数的周期公式可计算出函数的最小正周期.【题目详解】由正切型函数的周期公式得,因此,函数的最小正周期为,故答案为.【题目点拨】本题考查正切型函数周期的求解,解题的关键在于正切型函数周期公式的应用,考查计算能力,属于基础题.14、【解题分析】试题分析:根据题意,由于等比数列中,,,则可知公比为,那么可知等比数列中,,,故可知,那么可知数列的前项和=1=,故可知答案为.考点:等比数列点评:主要是考查了等比数列的通项公式以及数列的求和的运用,属于基础题.15、1【解题分析】
首先根据、即可求出和,从而求出。【题目详解】,①,②①②得,,即,∴,即,∴,故答案为:1.【题目点拨】本题主要考查了解方程,以及等差数列的性质和前项和。其中等差数列的性质:若则比较常考,需理解掌握。16、【解题分析】
利用正切函数在单调递增,求得的值域为.【题目详解】因为函数在单调递增,所以,,故函数的值域为.【题目点拨】本题考查利用函数的单调性求值域,注意定义域、值域要写成区间的形式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解题分析】
(1)根据已知可变形为常数;(2)首先求数列的通项公式,然后利用裂项相消法求,若满足对恒成立,需满足,,求的取值范围.【题目详解】(1)证明:因为,所以,,则.又,故数列是以1为首项,2为公差的等差数列.(2)由(1)可知,则.因为,所以,所以.易知单调递增,则.所以,且,解得.故的取值范围为.【题目点拨】本题考查了证明等差数列的方法,以及裂项相消法求和,本题的一个亮点是与函数结合考查数列的最值问题,涉及最值时,需先判断函数的单调性,可以根据函数特征直接判断单调性或是根据的正负判断单调性,然后求最值.18、(Ⅰ);(Ⅱ).【解题分析】
(Ⅰ)由向量夹角公式可求,再由三角函数的诱导公式,化简得原式,利用三角函数的基本关系式,即可求解.(Ⅱ)作出图象,结合直角中,求得,进而得到,,即可求得向量与向量的夹角的取值范围.【题目详解】(Ⅰ)由向量夹角公式可求,又由,因为,所以,故原式=.(Ⅱ)如图所示,向量的终点在以点为圆心、半径为的圆上,是圆的两条切线,切点分别为,在直角中,,可得,即所以,因为,所以,,所以向量与向量的夹角的取值范围是.【题目点拨】本题主要考查了向量的数量积的运算公式,向量的夹角公式的应用,以及诱导公式的化简求值问题,其中解答中熟记向量的夹角公式和向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于中档试题.19、(1),(2)【解题分析】
(1)利用三角函数的和差公式化简已知等式可得,结合为锐角可得的值.(2)由余弦定理可得,解得的值,根据三角形的面积公式即可求解.【题目详解】(1)∵,∴∵∴可得:∵A,C为锐角,∴,可得:(2)∵∴由余弦定理,可得:,即,解得:或3,因为为锐角三角形,所以需满足所以所以的面积为【题目点拨】本题主要考查了三角函数恒等变换及余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.20、(1)或,(2)点P坐标为或.【解题分析】(1)设直线l的方程为y=k(x-4),即kx-y-4k=0.由垂径定理,得圆心C1到直线l的距离d==1,结合点到直线距离公式,得=1,化简得24k2+7k=0,解得k=0或k=-.所求直线l的方程为y=0或y=-(x-4),即y=0或7x+24y-28=0.(2)设点P坐标为(m,n),直线l1、l2的方程分别为y-n=k(x-m),y-n=-(x-m),即kx-y+n-km=0,-x-y+n+m=0.因为直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,两圆半径相等.由垂径定理,得圆心C1到直线l1与圆心C2到直线l2的距离相等.故有,化简得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5.因为关于k的方程有无穷多解,所以有解得点P坐标为或.21、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八年级数学苏科版上册第六单元《6.6一次函数、一元一次方程和一元一次不等式》教学设计教案2
- 中国低温消毒柜项目投资可行性研究报告
- 医疗机构装修工人合同
- 2025年度个人资产转让协议版:股权买卖合作协议
- 健身房茶坊装修协议模板
- 2025年度中小学实习教师岗位聘任合同协议
- 2025年度商用房屋租赁协议(含租户品牌合作)
- 2025年度房产抵押债务重组实施协议
- 2024-2030年中国医用除颤器行业市场发展监测及投资潜力预测报告
- 2025年度手房定金合同电子版多语言版本服务协议
- IQC检验作业指导书
- 城市自来水厂课程设计
- 重庆市2024年小升初语文模拟考试试卷(含答案)
- 2024智慧城市数据采集标准规范
- 【人教版】《劳动教育》七上 劳动项目一 疏通厨房下水管道 课件
- 2024特斯拉的自动驾驶系统FSD发展历程、技术原理及未来展望分析报告
- 2024-2030年中国银行人工智能行业市场深度调研及发展趋势与投资前景研究报告
- 五届全国智能制造应用技术技能大赛数字孪生应用技术员(智能制造控制技术方向)赛项实操样题
- 中国银行中银数字服务(南宁)有限公司招聘笔试真题2023
- 2024七年级英语下册 Module 1 Lost and found教案(新版)外研版
- 2024年公共卫生基本知识考试题库(附含答案)
评论
0/150
提交评论