版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省长春市九台示范高级中学高一数学第二学期期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在区间上随机取一个数,使得的概率为()A. B. C. D.2.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=A. B. C.2 D.33.在正方体中,异面直线与所成的角为()A.30° B.45° C.60° D.90°4.若,则()A.-4 B.3 C.4 D.-35.过点斜率为-3的直线的一般式方程为()A. B.C. D.6.设变量、满足约束条件,则目标函数的最大值为()A.2 B.3 C.4 D.97.等比数列中,,,则公比等于()A.2 B.3 C. D.8.等差数列的前项和为,若,则()A.27 B.36 C.45 D.549.函数的最大值是()A. B. C. D.10.向正方形ABCD内任投一点P,则“的面积大于正方形ABCD面积的”的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.从甲、乙、丙等5名候选学生中选2名作为青年志愿者,则甲、乙、丙中有2个被选中的概率为________.12.已知等差数列中,,,则该等差数列的公差的值是______.13.已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.14.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.04,出现丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为________.15.中,内角,,所对的边分别是,,,且,,则的值为__________.16.已知直线过点,且在两坐标轴上的截距相等,则此直线的方程为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加.(1)设年内(本年度为第一年)总投入为万元,旅游业总收入为万元,写出的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?18.已知扇形的面积为,弧长为,设其圆心角为(1)求的弧度;(2)求的值.19.已知数列的前项和,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和.20.设数列的前项和.已知.(1)求数列的通项公式;(2)是否对一切正整数,有?说明理由.21.现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求被选中的概率;(2)求和不全被选中的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】则,故概率为.2、D【解题分析】
由余弦定理得,解得(舍去),故选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!3、C【解题分析】
首先由可得是异面直线和所成角,再由为正三角形即可求解.【题目详解】连接.因为为正方体,所以,则是异面直线和所成角.又,可得为等边三角形,则,所以异面直线与所成角为,故选:C【题目点拨】本题考查异面直线所成的角,利用平行构造三角形或平行四边形是关键,考查了空间想象能力和推理能力,属于中档题.4、A【解题分析】
已知等式左边用诱导公式变形后用正弦和二倍角公式化简,右边用切化弦法变形,再由二倍角公式化简后可得.【题目详解】,,∴,.故选:A.【题目点拨】本题考查诱导公式,考查二倍角公式,同角间的三角函数关系,掌握三角函数恒等变形公式,确定选用公式的顺序是解题关键.5、A【解题分析】
由点和斜率求出点斜式方程,化为一般式方程即可.【题目详解】解:过点斜率为的直线方程为,化为一般式方程为;故选:.【题目点拨】本题考查了由点以及斜率求点斜式方程的问题,属于基础题.6、D【解题分析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【题目详解】画出满足约束条件的可行域,如图,画出可行域,,,,平移直线,由图可知,直线经过时目标函数有最大值,的最大值为9.故选D.【题目点拨】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7、A【解题分析】
由题意利用等比数列的通项公式,求出公比的值.【题目详解】解:等比数列中,,,,则公比,故选:.【题目点拨】本题主要考查等比数列的通项公式的应用,属于基础题.8、B【解题分析】
利用等差数列的性质进行化简,由此求得的值.【题目详解】依题意,所以,故选B.【题目点拨】本小题主要考查等差数列的性质,考查等差数列前项和公式,属于基础题.9、B【解题分析】
令,再计算二次函数定区间上的最大值。【题目详解】令则【题目点拨】本题考查利用换元法将计算三角函数的最值转化为计算二次函数定区间上的最值。属于基础题。10、C【解题分析】
由题意,求出满足题意的点所在区域的面积,利用面积比求概率.【题目详解】由题意,设正方形的边长为1,则正方形的面积为1,要使的面积大于正方形面积的,需要到的距离大于,即点所在区域面积为,由几何概型得,的面积大于正方形面积的的概率为.故选:C.【题目点拨】本题考查几何概型的概率求法,解题的关键是明确概率模型,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】因为从5名候选学生中任选2名学生的方法共有10种,而甲、乙、丙中有2个被选中的方法有3种,所以甲、乙、丙中有2个被选中的概率为.12、【解题分析】
根据等差数列的通项公式即可求解【题目详解】故答案为:【题目点拨】本题考查等差通项基本量的求解,属于基础题13、8π【解题分析】分析:作出示意图,根据条件分别求出圆锥的母线,高,底面圆半径的长,代入公式计算即可.详解:如下图所示,又,解得,所以,所以该圆锥的体积为.点睛:此题为填空题的压轴题,实际上并不难,关键在于根据题意作出相应图形,利用平面几何知识求解相应线段长,代入圆锥体积公式即可.14、0.95【解题分析】
根据抽查一件产品是甲级品、乙级品、丙级品是互为互斥事件,且三个事件对立,再根据抽得正品即为抽得甲级品的概率求解.【题目详解】记事件A={甲级品},B={乙级品},C={丙级品}因为事件A,B,C互为互斥事件,且三个事件对立,所以抽得正品即为抽得甲级品的概率为故答案为:0.95【题目点拨】本题主要考查了互斥事件和对立事件概率的求法,还考查了运算求解的能力,属于基础题.15、4【解题分析】
利用余弦定理变形可得,从而求得结果.【题目详解】由余弦定理得:本题正确结果:【题目点拨】本题考查余弦定理的应用,关键是能够熟练应用的变形,属于基础题.16、或【解题分析】
分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为,把已知点坐标代入即可求出的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为,把已知点的坐标代入即可求出的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【题目详解】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为,把代入所设的方程得:,则所求直线的方程为即;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为,把代入所求的方程得:,则所求直线的方程为即.综上,所求直线的方程为:或.故答案为:或【题目点拨】此题考查学生会根据条件设出直线的截距式方程和点斜式方程,考查了分类讨论的数学思想,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)至少经过5年,旅游业的总收入才能超过总投入.【解题分析】
(1)利用等比数列求和公式可求出n年内的旅游业总收入与n年内的总投入;(2)设至少经过年旅游业的总收入才能超过总投入,可得->0,结合(1)可得,解得,进而可得结果.【题目详解】(1)第1年投入为800万元,第2年投入为800×(1-)万元,…第n年投入为800×(1-)n-1万元,所以,n年内的总投入为=800+800×(1-)+…+800×(1-)n-1==4000×[1-()n]第1年旅游业收入为400万元,第2年旅游业收入为400×(1+),…,第n年旅游业收入400×(1+)n-1万元.所以,n年内的旅游业总收入为=400+400×(1+)+…+400×(1+)n-1==1600×[()n-1](2)设至少经过n年旅游业的总收入才能超过总投入,由此->0,即:1600×[()n-1]-4000×[1-()n]>0,令x=()n,代入上式得:5x2-7x+2>0.解此不等式,得x<,或x>1(舍去).即()n<,由此得n≥5.∴至少经过5年,旅游业的总收入才能超过总投入.【题目点拨】本题主要考查阅读能力及建模能力、等比数列的求和公式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.18、(1)(2)【解题分析】
(1)由弧长求出半径,再由面积求得圆心角;(2)先由诱导公式化简待求式为,利用两角差的正切公式可求.【题目详解】(1)设扇形的半径为r,则,所以.由可得,解得.(2)..【题目点拨】本题考查扇形的弧长与面积公式,考查诱导公式,同角间的三角函数关系,考查两角差的正切公式.求值时用诱导公式化简是解题关键..19、(Ⅰ);(Ⅱ).【解题分析】
(1)本题可令求出的值,然后令求出,即可求出数列的通项公式;(2)首先可令,然后根据错位相减法即可求出数列的前项和。【题目详解】(1)当,,得.当时,,,两式相减,得,化简得,所以数列是首项为、公比为的等比数列,所以。(2)由(1)可知,令,则①,两边同乘以公比,得到②,由①②得:所以。【题目点拨】本题主要考查了数列通项的求法以及数列前项和的方法,求数列通项常用的方法有:累加法、累乘法、定义法、配凑法等;求数列前项和常用的方法有:错位相减法、裂项相消法、公式法、分组求和法等,属于中等题。20、(1);(2)对一切正整数,有.【解题分析】
(1)运用数列的递推式,结合等差数列的定义和通项公式,可得所求;(2)对一切正整数n,有,考虑当时,,再由裂项相消求和,即可得证。【题目详解】(1)当时,两式做差得,,当时,上式显然成立,。(2)证明:当时,可得由可得即有<则当时,不等式成立。检验时,不等式也成立,综上对一切正整数n,有。【题目点拨】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版委托借款合同范本
- 2024年双方关于量子计算机技术研发合同
- 出租门面合同范本2024年
- 房地产项目联营开发合同样本
- 广告位合作合同模板
- 2024自建房购房合同协议书范本
- 2024报价合同格式范本质押合同格式范本2
- 2024生鲜品采购合同范本
- 2024购销合同范本(手机美容保护膜系统购销)范文
- 房产中介合同样本
- (完整版)病例演讲比赛PPT模板
- 直播合作协议
- 社科类课题申报工作辅导报告课件
- 头痛的诊治策略讲课课件
- 沙利文-内窥镜行业现状与发展趋势蓝皮书
- 国家开放大学一网一平台电大《建筑测量》实验报告1-5题库
- 规范诊疗服务行为专项整治行动自查表
- (新平台)国家开放大学《建设法规》形考任务1-4参考答案
- 精益工厂布局及精益物流规划课件
- 注射液无菌检查的方法学验证方案
- 2023年口腔医学期末复习-牙周病学(口腔医学)考试历年真题荟萃带答案
评论
0/150
提交评论