广东省广州市番禺区禺山高级中学2024届数学高一下期末复习检测模拟试题含解析_第1页
广东省广州市番禺区禺山高级中学2024届数学高一下期末复习检测模拟试题含解析_第2页
广东省广州市番禺区禺山高级中学2024届数学高一下期末复习检测模拟试题含解析_第3页
广东省广州市番禺区禺山高级中学2024届数学高一下期末复习检测模拟试题含解析_第4页
广东省广州市番禺区禺山高级中学2024届数学高一下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市番禺区禺山高级中学2024届数学高一下期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个几何体的三视图如图所示,则这个几何体的体积等于()A. B.或 C.或 D.2.设,则A.-1 B.1 C.ln2 D.-ln23.函数的定义域为()A. B. C. D.4.已知向量,,则向量在向量方向上的投影为()A. B. C.-1 D.15.已知角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,则()A. B. C. D.6.设平面向量,,若,则等于()A. B. C. D.7.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是()A. B.C. D.8.执行如图所示的程序框图,则输出的值是()A. B. C. D.9.设是△所在平面内的一点,且,则△与△的面积之比是()A. B. C. D.10.已知两个等差数列,的前项和分别为,,若对任意的正整数,都有,则等于()A.1 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若圆弧长度等于圆内接正六边形的边长,则该圆弧所对圆心角的弧度数为________.12.已知椭圆的右焦点为,过点作圆的切线,若两条切线互相垂直,则_____________.13.设函数,则使得成立的的取值范围是_______________.14.已知向量,,则在方向上的投影为______.15.执行右边的程序框图,若输入的是,则输出的值是.16.已知数列的前n项和为,,且(),记(),若对恒成立,则的最小值为__.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)求证:(2)请利用(1)的结论证明:(3)请你把(2)的结论推到更一般的情形,使之成为推广后的特例,并加以证明:(4)化简:.18.已知向量,.(1)当为何值时,与垂直?(2)若,,且三点共线,求的值.19.在中,内角的对边分别为,且.(1)求角;(2)若,,求的值.20.在中,分别为角所对应的边,已知,,求的长度.21.设向量.(Ⅰ)若与垂直,求的值;(Ⅱ)求的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

作出几何体的直观图,可知几何体为正方体切一角所得的组合体,计算出正方体的体积和所切去三棱锥的体积,相减可得答案.【题目详解】几何体的直观图如下图所示:可知几何体为正方体切一角所得的组合体,因此,该几何体的体积为.故选:D.【题目点拨】本题考查的知识点是由三视图求体积,其中根据三视图作出几何体的直观图是解答的关键,考查空间想象能力与计算能力,属于中等题.2、C【解题分析】

先把化为,再根据公式和求解.【题目详解】故选C.【题目点拨】本题考查对数、指数的运算,注意观察题目之间的联系.3、C【解题分析】要使函数有意义,需使,即,所以故选C4、A【解题分析】

根据投影的定义和向量的数量积求解即可.【题目详解】解:∵,,∴向量在向量方向上的投影,故选:A.【题目点拨】本题主要考查向量的数量积的定义及其坐标运算,属于基础题.5、B【解题分析】

先由角的终边过点,求出,再由二倍角公式,即可得出结果.【题目详解】因为角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,所以,因此.故选B【题目点拨】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.6、D【解题分析】分析:由向量垂直的条件,求解,再由向量的模的公式和向量的数量积的运算,即可求解结果.详解:由题意,平面向量,且,所以,所以,即,又由,所以,故选D.点睛:本题主要考查了向量的数量积的运算和向量模的求解,其中解答中熟记平面向量的数量积的运算公式和向量模的计算公式是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解题分析】

设阴影部分正方形的边长为,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率.【题目详解】如图所示,设阴影部分正方形的边长为,则七巧板所在正方形的边长为,由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率,故选:B.【题目点拨】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.8、C【解题分析】

根据程序框图列出算法循环的每一步,结合判断条件得出输出的的值.【题目详解】执行如图所示的程序框图如下:不成立,,;不成立,,;不成立,,;不成立,,.成立,跳出循环体,输出的值为,故选C.【题目点拨】本题考查利用程序框图计算输出结果,对于这类问题,通常利用框图列出算法的每一步,考查计算能力,属于中等题.9、B【解题分析】试题分析:依题意,得,设点到的距离为,所以与的面积之比是,故选B.考点:三角形的面积.10、B【解题分析】

利用等差数列的性质将化为同底的,再化简,将分子分母配凑成前n项和的形式,再利用题干条件,计算。【题目详解】∵等差数列,的前项和分别为,,对任意的正整数,都有,∴.故选B.【题目点拨】本题考查等差数列的性质的应用,属于中档题。二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】

根据圆的内接正六边形的边长得出弧长,利用弧长公式即可得到圆心角.【题目详解】因为圆的内接正六边形的边长等于圆的半径,所以圆弧长所对圆心角的弧度数为1.故答案为:1【题目点拨】此题考查弧长公式,根据弧长求圆心角的大小,关键在于熟记圆的内接正六边形的边长.12、【解题分析】

首先分析直线与圆的位置关系,然后结合已知可判断四边形的形状,得出的比值,最后得到答案.【题目详解】设切点为,根据已知两切线垂直,四边形是正方形,,根据,可得.故填:.【题目点拨】本题考查了直线与圆的几何性质,以及椭圆的性质,考查了转化与化归的能力,属于基础题型.13、【解题分析】

根据函数的表达式判断出函数为偶函数,判断函数在的单调性为递增,根据偶函数的对称性可得,解绝对值不等式即可.【题目详解】解:,定义域为,因为,所以函数为偶函数.当时,易知函数在为增函数,根据偶函数的性质可知:由可知,所以,解得:或.故答案为:.【题目点拨】本题考查偶函数的性质和利用偶函数对称性的特点解决问题,属于基础题.14、【解题分析】

由平面向量投影的定义可得出在方向上的投影为,从而可计算出结果.【题目详解】设平面向量与的夹角为,则在方向上的投影为.故答案为:.【题目点拨】本题考查平面向量投影的计算,熟悉平面向量投影的定义是解题的关键,考查计算能力,属于基础题.15、24【解题分析】

试题分析:根据框图的循环结构,依次;;;.跳出循环输出.考点:算法程序框图.16、【解题分析】

,即为首项为,公差为的等差数列,,,,由得,因为或时,有最大值,,即的最小值为,故答案为.【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②;③;④;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)证明见解析,(3),证明见解析(4)【解题分析】

(1)右边余切化正切后,利用二倍角的正切公式变形可证;(2)将(1)的结果变形为,然后将所证等式的右边的正切化为余切即可得证;(3)根据(1)(2)的规律可得结果;(4)由(3)的结果可得.【题目详解】(1)证明:因为,所以(2)因为,所以,所以(3)一般地:,证明:因为所以,以此类推得(4).【题目点拨】本题考查了归纳推理,考查了同角公式,考查了二倍角的正切公式,属于中档题.18、(1);(2).【解题分析】

(1)利用坐标运算表示出与;根据向量垂直可知数量积为零,从而构造方程求得结果;(2)利用坐标运算表示出,根据三点共线可知,根据向量共线的坐标表示可构造方程求得结果.【题目详解】(1),与垂直,解得:(2)三点共线,,解得:【题目点拨】本题考查平面向量的坐标运算,涉及到向量平行和垂直的坐标表示;关键是能够明确两向量垂直则数量积等于零,能够利用平行关系表示三点共线.19、(1)(2),【解题分析】

(1)由正弦定理可得,求得,即可解得角;(2)由余弦定理,列出方程,即可求解.【题目详解】(1)由题意知,由正弦定理可得,因为,则,所以,即,又由,所以.(2)由(1)知和,,由余弦定理,即,即,解得,所以.【题目点拨】本题主要考查了正弦定理、余弦定理的应用,其中解答中熟记三角形的正弦、余弦定理,准确计算是解答的挂念,着重考查了推理与计算能力,属于基础题.20、或【解题分析】

由已知利用三角形的面积公式可得,可得或,然后分类讨论利用余弦定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论