版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌市第一中学2024届高一数学第二学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若对于恒成立,则实数的取值范围为()A. B. C. D.2.已知是第一象限角,那么是()A.第一象限角 B.第二象限角C.第一或第二象限角 D.第一或第三象限角3.已知函数,下列结论不正确的是(
)A.函数的最小正周期为B.函数在区间内单调递减C.函数的图象关于轴对称D.把函数的图象向左平移个单位长度可得到的图象4.已知,表示两条不同的直线,表示平面,则下列说法正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则5.若实数x,y满足条件,目标函数,则z的最大值为()A. B.1 C.2 D.06.如图,两个正方形和所在平面互相垂直,设、分别是和的中点,那么:①;②平面;③;④、异面.其中不正确的序号是()A.① B.② C.③ D.④7.已知函数,若存在满足,且,则n的最小值为()A.3 B.4 C.5 D.68.已知a,b,c∈R,那么下列命题中正确的是()A.若a>b,则ac2>bc2B.若,则a>bC.若a3>b3且ab<0,则D.若a2>b2且ab>0,则9.已知数列满足,,,则的值为()A.12 B.15 C.39 D.4210.圆心为且过原点的圆的一般方程是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.定义运算,如果,并且不等式对任意实数x恒成立,则实数m的范围是______.12.如图,半径为的扇形的圆心角为,点在上,且,若,则__________.13.用数学归纳法证明时,从“到”,左边需增乘的代数式是___________.14.函数,函数,若对所有的总存在,使得成立,则实数的取值范围是__________.15.执行如图所示的程序框图,则输出的_______.16.若直线与直线平行,则实数a的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.的内角的对边分别为,已知.(1)求角;(2)若,求的面积.18.已知数列为单调递增数列,,其前项和为,且满足.(1)求数列的通项公式;(2)若数列,其前项和为,若成立,求的最小值.19.函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形.(1)求的值及函数的值域;(2)若,且,求的值.20.(2012年苏州17)如图,在中,已知为线段上的一点,且.(1)若,求的值;(2)若,且,求的最大值.21.在△ABC中,内角A、B、C所对的边分别为a、b、c,,.(1)若,求△ABC的周长;(2)若CD为AB边上的中线,且,求△ABC的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
首先设,将题意转化为,即可,再分类讨论求出,解不等式组即可.【题目详解】,恒成立,等价于,恒成立.令,对称轴为.即等价于,即可.当时,得到,解得:.当时,得到,解得:.当时,得到,解得:.综上所述:.故选:A【题目点拨】本题主要考查二次不等式的恒成立问题,同时考查了二次函数的最值问题,分类讨论是解题的关键,属于中档题.2、D【解题分析】
根据象限角写出的取值范围,讨论即可知在第一或第三象限角【题目详解】依题意得,则,当时,是第一象限角当时,是第三象限角【题目点拨】本题主要考查象限角,属于基础题.3、D【解题分析】
利用余弦函数的性质对A、B、C三个选项逐一判断,再利用平移“左加右减”及诱导公式得出,进而得出答案.【题目详解】由题意,函数其最小正周期为,故选项A正确;函数在上为减函数,故选项B正确;函数为偶函数,关于轴对称,故选项C正确把函数的图象向左平移个单位长度可得,所以选项D不正确.故答案为D【题目点拨】本题主要考查了余弦函数的性质,以及诱导公式的应用,着重考查了推理与运算能力,属于基础题.4、A【解题分析】
根据线面垂直的判定与性质、线面平行的判定与性质依次判断各个选项可得结果.【题目详解】选项:由线面垂直的性质定理可知正确;选项:由线面垂直判定定理知,需垂直于内两条相交直线才能说明,错误;选项:若,则平行关系不成立,错误;选项:的位置关系可能是平行或异面,错误.故选:【题目点拨】本题考查空间中线面平行与垂直相关命题的辨析,关键是能够熟练掌握空间中直线与平面位置关系的判定与性质定理.5、C【解题分析】
画出可行域和目标函数,根据平移得到最大值.【题目详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【题目点拨】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.6、D【解题分析】
取的中点,连接,,连接,,由线面垂直的判定和性质可判断①;由三角形的中位线定理,以及线面平行的判定定理可判断②③④.【题目详解】解:取的中点,连接,,连接,,正方形和所在平面互相垂直,、分别是和的中点,可得,,平面,可得,故①正确;由为的中位线,可得,且平面,可得平面,故②③正确,④错误.故选:D.【题目点拨】本题主要考查空间线线和线面的位置关系,考查转化思想和数形结合思想,属于基础题.7、D【解题分析】
根据正弦函数的性质,对任意(i,j=1,2,3,…,n),都有,因此要使得满足条件的n最小,则尽量让更多的取值对应的点是最值点,然后再对应图象取值.【题目详解】,因为正弦函数对任意(i,j=1,2,3,…,n),都有,要使n取得最小值,尽可能多让(i=1,2,3,…,n)取得最高点,因为,所以要使得满足条件的n最小,如图所示则需取,,,,,,即取,,,,,,即.故选:D【题目点拨】本题主要考查正弦函数的图象,还考查了数形结合的思想方法,属于中档题.8、C【解题分析】
根据不等式的性质,对A、B、C、D四个选项通过举反例进行一一验证.【题目详解】A.若a>b,则ac2>bc2(错),若c=0,则A不成立;B.若,则a>b(错),若c<0,则B不成立;C.若a3>b3且ab<0,则(对),若a3>b3且ab<0,则D.若a2>b2且ab>0,则(错),若,则D不成立.故选:C.【题目点拨】此题主要考查不等关系与不等式的性质及其应用,例如举反例法求解比较简单.两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.9、B【解题分析】
根据等差数列的定义可得数列为等差数列,求出通项公式即可.【题目详解】由题意得所以为等差数列,,,选择B【题目点拨】本题主要考查了判断是否为等差数列以及等差数列通项的求法,属于基础题.10、D【解题分析】
根据题意,求出圆的半径,即可得圆的标准方程,变形可得其一般方程。【题目详解】根据题意,要求圆的圆心为,且过原点,且其半径,则其标准方程为,变形可得其一般方程是,故选.【题目点拨】本题主要考查圆的方程求法,以及标准方程化成一般方程。二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
先由题意得到,根据题意求出的最大值,即可得出结果.【题目详解】由题意得到,其中,因为,所以,又不等式对任意实数x恒成立,所以.故答案【题目点拨】本题主要考查由不等式恒成立求参数的问题,熟记三角函数的性质即可,属于常考题型.12、【解题分析】根据题意,可得OA⊥OC,以O为坐标为坐标原点,OC,OA所在直线分别为x轴、y轴建立平面直角坐标系,如图所示:则有C(1,0),A(0,1),B(cos30°,-sin30°),即.于是.由,得:,则:,解得.∴.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.13、.【解题分析】
从到时左边需增乘的代数式是,化简即可得出.【题目详解】假设时命题成立,则,当时,从到时左边需增乘的代数式是.故答案为:.【题目点拨】本题考查数学归纳法的应用,考查推理能力与计算能力,属于中档题.14、【解题分析】
分别求得f(x)、g(x)在[0,]上的值域,结合题意可得它们的值域间的包含关系,从而求得实数m的取值范围.【题目详解】∵f(x)=sin2x+(2cos2x﹣1)=sin2x+cos2x=2sin(2x+),当x∈[0,],2x+∈[,],∴2sin(2x+)∈[1,2],∴f(x)∈[1,2].对于g(x)=mcos(2x﹣)﹣2m+3(m>0),2x﹣∈[﹣,],mcos(2x﹣)∈[,m],∴g(x)∈[﹣+3,3﹣m].由于对所有的x2∈[0,]总存在x1∈[0,],使得f(x1)=g(x2)成立,可得[﹣+3,3﹣m]⊆[1,2],故有3﹣m≤2,﹣+3≥1,解得实数m的取值范围是[1,].故答案为.【题目点拨】本题考查两角和与差的正弦函数,着重考查三角函数的性质的运用,考查二倍角的余弦,解决问题的关键是理解“对所有的x2∈[0,]总存在x1∈[0,],使得f(x1)=g(x2)成立”的含义,转化为f(x)的值域是g(x)的子集.15、【解题分析】
按照程序框图运行程序,直到a的值满足a>100时,输出结果即可.【题目详解】第一次循环:a=3;第二次循环:a=7;第三次循环:a=15;第四次循环:a=31;第五次循环:a=63;第六次循环:a=127,a>100,所以输出a.所以本题答案为127.【题目点拨】本题考查根据程序框图中的循环结构计算输出结果的问题,属于基础题.16、0【解题分析】
解方程即得解.【题目详解】因为直线与直线平行,所以,所以或.当时,两直线重合,所以舍去.当时,两直线平行,满足题意.故答案为:【题目点拨】本题主要考查两直线平行的性质,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)首先利用正弦定理的边角互化,可将等式化简为,再利用,可知,最后化简求值;(2)利用余弦定理可求得,代入求面积.【题目详解】(1)由已知以及余弦定理得:所以,(2)由题知,【题目点拨】本题第一问考查了正弦定理,第二问考查了余弦定理和面积公式,当一个式子有边也有角时,一般可通过正弦定理边角互化转化为三角函数恒等变形问题,而对于余弦定理与三角形面积的关系时,需重视的变形使用.18、(1);(2)10.【解题分析】
(1)先根据和项与通项关系得项之间递推关系,再根据等差数列定义及其通项公式得数列的通项公式;(2)先根据裂项相消法求,再解不等式得,即得的最小值.【题目详解】(1)由知:,两式相减得:,即,又数列为单调递增数列,,∴,∴,又当时,,即,解得或(舍),符合,∴是以1为首项,以2为公差的等差数列,∴.(2),∴,又∵,即,解得,又,所以的最小值为10.点睛:裂项相消法是指将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如或.19、(2),函数的值域为;(2).【解题分析】
(1)将函数化简整理,根据正三角形的高为,可求出,进而可得其值域;(2)由得到,再由求出,进而可求出结果.【题目详解】(1)由已知可得,又正三角形的高为,则,所以函数的最小正周期,即,得,函数的值域为.(2)因为,由(1)得,即,由,得,即=,故.【题目点拨】本题主要考查三角函数的图象和性质,熟记正弦函数的性质即可求解,属于基础题型.20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 织机销售合同范本
- 水田售卖合同范本
- 2024年果醋饮料合作协议书
- 家庭门窗合同范本
- 商业地产代理合同范本
- 高科技企业员工自愿解除劳动合同协议书
- 2024至2030年童被多件套项目投资价值分析报告
- 2024至2030年沙贝画项目投资价值分析报告
- 2024至2030年中载型全方位云台项目投资价值分析报告
- 2024年脱水果菜项目可行性研究报告
- 学校学生食堂“三防”制度
- 数学-湖湘名校教育联合体2024年下学期高二10月大联考试题和答案
- 2024年农村合作社管理制度范本(二篇)
- 职业技能竞赛-网络与信息安全管理员理论题库(附参考答案)
- 青岛版科学三年级上册全册课件教材
- 三年级上册道德与法治第3课《做学习的主人》教案教学设计(第二课时)
- 二十届三中全会知识点试题及答案【200题】
- 2024年高考真题-地理(甘肃卷) 含答案
- 《助产学》考试试题及答案
- GB/T 18385-2024纯电动汽车动力性能试验方法
- 期末+(试题)+-2024-2025学年人教PEP版英语六年级上册
评论
0/150
提交评论