2024届江苏省江阴市四校高一数学第二学期期末预测试题含解析_第1页
2024届江苏省江阴市四校高一数学第二学期期末预测试题含解析_第2页
2024届江苏省江阴市四校高一数学第二学期期末预测试题含解析_第3页
2024届江苏省江阴市四校高一数学第二学期期末预测试题含解析_第4页
2024届江苏省江阴市四校高一数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省江阴市四校高一数学第二学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线y=x+b与曲线有公共点,则b的取值范围是A.B.C.D.2.已知是第二象限角,()A. B. C. D.3.一个不透明袋中装有大小、质地完成相同的四个球,四个球上分别标有数字2,3,4,6,现从中随机选取三个球,则所选三个球上的数字能构成等差数列(如:、、成等差数列,满足)的概率是()A. B. C. D.4.直线是圆在处的切线,点是圆上的动点,则点到直线的距离的最小值等于()A.1 B. C. D.25.设变量、满足约束条件,则目标函数的最大值为()A.2 B.3 C.4 D.96.若,则的坐标是()A. B. C. D.7.已知数列的前项和(),那么()A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不可能是等差数列,也不可能是等比数列8.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①;②;③;④.其中“同簇函数”的是()A.①②B.①④C.②③D.③④9.若直线xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.10.不等式的解集是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数,则__________.12.已知,为锐角,且,则__________.13.如图所示为函数的部分图像,其中、分别是函数图像的最高点和最低点,且,那么________.14.据两个变量、之间的观测数据画成散点图如图,这两个变量是否具有线性相关关系_____(答是与否).15.对于正项数列,定义为的“光阴”值,现知某数列的“光阴”值为,则数列的通项公式为_____.16.若数列的前项和为,则该数列的通项公式为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2013年11月,总书记到湖南湘西考察时首次作出了“实事求是、因地制宜、分类指导精准扶贫”的重要指示.2014年1月,中央详细规制了精准扶贫工作模式的顶层设计,推动了“精准扶贫”思想落地.2015年1月,精准扶贫首个调研地点选择了云南,标志着精准扶贫正式开始实行.某单位立即响应党中央号召,对某村6户贫困户中的甲户进行定点帮扶,每年跟踪调查统计一次,从2015年1月1日至2018年12月底统计数据如下(人均年纯收入):年份2015年2016年2017年2018年年份代码1234收入(百元)25283235(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程,并估计甲户在2019年能否脱贫;(注:国家规定2019年脱贫标准:人均年纯收入为3747元)(2)2019年初,根据扶贫办的统计知,该村剩余5户贫困户中还有2户没有脱贫,现从这5户中抽取2户,求至少有一户没有脱贫的概率.参考公式:,,其中为数据的平均数.18.求适合下列条件的直线方程:经过点,倾斜角等于直线的倾斜角的倍;经过点,且与两坐标轴围成一个等腰直角三角形。19.已知函数().(1)若不等式的解集为,求的取值范围;(2)当时,解不等式;(3)若不等式的解集为,若,求的取值范围.20.设函数(1)若对于一切实数恒成立,求的取值范围;(2)若对于恒成立,求的取值范围.21.如图,在四棱锥中,底面为菱形,、、分别是棱、、的中点,且平面.(1)求证:平面;(2)求证:平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

试题分析:如图所示:曲线即(x-2)2+(y-3)2=4(-1≤y≤3),表示以A(2,3)为圆心,以2为半径的一个半圆,直线与圆相切时,圆心到直线y=x+b的距离等于半径2,可得=2,∴b=1+2,b=1-2当直线过点(4,3)时,直线与曲线有两个公共点,此时b=-1结合图象可得≤b≤3故答案为C2、A【解题分析】cosα=±=±,又∵α是第二象限角,∴cosα=-.3、B【解题分析】

用列举法写出所有基本事件,确定成等差数列含有的基本事件,计数后可得概率.【题目详解】任取3球,结果有234,236,246,346共4种,其中234,246是成等差数列的2个基本事件,∴所求概率为.故选:B.【题目点拨】本题考查古典概型,解题时可用列举法列出所有的基本事件.4、D【解题分析】

先求得切线方程,然后用点到直线距离减去半径可得所求的最小值.【题目详解】圆在点处的切线为,即,点是圆上的动点,圆心到直线的距离,∴点到直线的距离的最小值等于.故选D.【题目点拨】圆中的最值问题,往往转化为圆心到几何对象的距离的最值问题.此类问题是基础题.5、D【解题分析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【题目详解】画出满足约束条件的可行域,如图,画出可行域,,,,平移直线,由图可知,直线经过时目标函数有最大值,的最大值为9.故选D.【题目点拨】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6、C【解题分析】

,.故选C.7、C【解题分析】试题分析:当时,,,∴数列是等差数列.当时,,∴数列是等比数列.综上所述,数列或是等差数列或是等比数列考点:等差数列等比数列的判定8、C【解题分析】试题分析:对于①中的函数而言,,对于③中的函数而言,,由“同簇函数”的定义而知,互为“同簇函数”的若干个函数的振幅相等,将②中的函数向左平移个单位长度,得到的新函数解析式为,故选C.考点:1.新定义;2.三角函数图象变换9、C【解题分析】

将1,2代入直线方程得到1a+2【题目详解】将1,2代入直线方程得到1a+b=(a+b)(当a=2故答案选C【题目点拨】本题考查了直线方程,均值不等式,1的代换是解题的关键.10、A【解题分析】

分解因式,即可求得.【题目详解】进行分解因式可得:,故不等式解集为:故选:A.【题目点拨】本题考查一元二次不等式的求解,属基础知识题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据分段函数的解析式先求,再求即可.【题目详解】因为,所以.【题目点拨】本题主要考查了分段函数求值问题,解题的关键是将自变量代入相应范围的解析式中,属于基础题.12、【解题分析】

由题意求得,再利用两角和的正切公式求得的值,可得的值.【题目详解】,为锐角,且,即,.再结合,则,故答案为.【题目点拨】本题主要考查两角和的正切公式的应用,属于基础题.13、【解题分析】

由图可知:,因为,由周期公式得到,结合以及诱导公式即可求解.【题目详解】由图可知:,因为所以,即由题意可知:,即故答案为:【题目点拨】本题主要考查了正弦型函数的图像的性质以及求值,关键是从图像得出周期,最值等,属于基础题.14、否【解题分析】

根据散点图的分布来判断出两个变量是否具有线性相关关系.【题目详解】由散点图可知,散点图分布无任何规律,不在一条直线附近,所以,这两个变量没有线性相关关系,故答案为否.【题目点拨】本题考查利用散点图判断两变量之间的线性相关关系,考查对散点图概念的理解,属于基础题.15、【解题分析】

根据的定义把带入即可。【题目详解】∵∴∵∴①∴②①-②得∴故答案为:【题目点拨】本题主要考查了新定义题,解新定义题首先需要读懂新定义,其次再根据题目的条件带入新定义即可,属于中等题。16、【解题分析】

由,可得出,再令,可计算出,然后检验是否满足在时的表达式,由此可得出数列的通项公式.【题目详解】由题意可知,当时,;当时,.又不满足.因此,.故答案为:.【题目点拨】本题考查利用求,一般利用来计算,但要对是否满足进行检验,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);甲户在2019年能够脱贫;(2)【解题分析】

(1)由已知数据求得与的值,得到线性回归方程,取求得值,说明甲户在2019年能否脱贫;(2)列出从该村剩余5户贫困户中任取2户的所有可能情况,利用随机事件的概率计算公式求解.【题目详解】(1)根据表格中数据可得,,由,,可得.∴关于的线性回归方程,当时,(百元),∵3850>3747,∴甲户在2019年能够脱贫;(2)设没有脱贫的2户为,另3户为,所有可能的情况为:共有10种可能.其中至少有一户没有脱贫的可能情况有7种.∴至少有一户没有脱贫的概率为.【题目点拨】本题主要考查线性回归方程的求法,考查随机事件概率的求法,是中档题.18、(1)(2)或【解题分析】

(1)根据倾斜角等于直线的倾斜角的倍,求出直线的倾斜角,再利用点斜式写出直线。(2)与两坐标轴围成一个等腰直角三角形等价于直线的斜率为.【题目详解】(1)已知,直线方程为化简得(2)由题意可知,所求直线的斜率为.又过点,由点斜式得,所求直线的方程为或【题目点拨】本题考查直线方程,属于基础题。19、(1);(2).;(3).【解题分析】试题分析:(1)对二项式系数进行讨论,可得求出解集即可;(2)分为,,分别解出3种情形对应的不等式即可;(3)将问题转化为对任意的,不等式恒成立,利用分离参数的思想得恒成立,求出其最大值即可.试题解析:(1)①当即时,,不合题意;②当即时,,即,∴,∴(2)即即①当即时,解集为②当即时,∵,∴解集为③当即时,∵,所以,所以∴解集为(3)不等式的解集为,,即对任意的,不等式恒成立,即恒成立,因为恒成立,所以恒成立,设则,,所以,因为,当且仅当时取等号,所以,当且仅当时取等号,所以当时,,所以点睛:本题主要考查了含有参数的一元二次不等式的解法,考查了分类讨论的思想以及转化与化归的能力,难度一般;对于含有参数的一元二次不等式常见的讨论形式有如下几种情形:1、对二次项系数进行讨论;2、对应方程的根进行讨论;3、对应根的大小进行讨论等;考查恒成立问题,正确分离参数是关键,也是常用的一种手段.通过分离参数可转化为或恒成立,即或即可,利用导数知识结合单调性求出或即得解.20、(1)(2)【解题分析】

(1)由不等式恒成立,结合二次函数的性质,分类讨论,即可求解;(2)要使对于恒成立,整理得只需恒成立,结合基本不等式求得最值,即可求解.【题目详解】(1)由题意,要使不等式恒成立,①当时,显然成立,所以时,不等式恒成立;②当时,只需,解得,综上所述,实数的取值范围为.(2)要使对于恒成立,只需恒成立,只需,又因为,只需,令,则只需即可因为,当且仅当,即时等式成立;因为,所以,所以.【题目点拨】本题主要考查了含参数的不等式的恒成立问题的求解,其中解答中把不等式的恒成立问题转化为函数的最值问题是解答的关键,着重考查了分类讨论思想,以及转化思想的应用,属于基础题.21、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论