山东省邹城二中2024届高一数学第二学期期末学业质量监测试题含解析_第1页
山东省邹城二中2024届高一数学第二学期期末学业质量监测试题含解析_第2页
山东省邹城二中2024届高一数学第二学期期末学业质量监测试题含解析_第3页
山东省邹城二中2024届高一数学第二学期期末学业质量监测试题含解析_第4页
山东省邹城二中2024届高一数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省邹城二中2024届高一数学第二学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了了解运动员对志愿者服务质量的意见,打算从1200名运动员中抽取一个容量为40的样本,考虑用系统抽样,则分段间隔为A.40 B.20 C.30 D.122.是边AB上的中点,记,,则向量()A. B.C. D.3.过点且与直线垂直的直线方程为()A. B.C. D.4.已知函数,给出下列四个结论:①函数满足;②函数图象关于直线对称;③函数满足;④函数在是单调增函数;其中正确结论的个数是()A. B. C. D.5.已知角以坐标系中为始边,终边与单位圆交于点,则的值为()A. B. C. D.6.一元二次不等式的解集为()A. B.C. D.7.已知是第三象限的角,若,则A. B. C. D.8.已知直线和互相平行,则它们之间的距离是()A. B. C. D.9.一个几何体的三视图如图(图中尺寸单位:m),则该几何体的体积为()A. B. C. D.10.某几何体的三视图如图所示,则该几何体的体积为()A.6 B.4C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在矩形中,,现将矩形沿对角线折起,则所得三棱锥外接球的体积是________.12.已知,,则________.13.从原点向直线作垂线,垂足为点,则的方程为_______.14.已知关于实数x,y的不等式组构成的平面区域为,若,使得恒成立,则实数m的最小值是______.15.若、是方程的两根,则__________.16.已知在数列中,,,则数列的通项公式______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和为.(1)求这个数列的通项公式;(2)若,求数列的前项和.18.化简求值:(1)化简:(2)求值,已知,求的值19.设数列的前项和,数列为等比数列,且.(1)求数列和的通项公式;(2)设,求数列的前项和.20.设,若存在,使得,且对任意,均有(即是一个公差为的等差数列),则称数列是一个长度为的“弱等差数列”.(1)判断下列数列是否为“弱等差数列”,并说明理由.①1,3,5,7,9,11;②2,,,,.(2)证明:若,则数列为“弱等差数列”.(3)对任意给定的正整数,若,是否总存在正整数,使得等比数列:是一个长度为的“弱等差数列”?若存在,给出证明;若不存在,请说明理由21.已知数列an满足an+1=2an(1)求证:数列bn(2)求数列an的前n项和为S

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

根据系统抽样的定义和方法,结合题意可分段的间隔等于个体总数除以样本容量,即可求解.【题目详解】根据系统抽样的定义和方法,结合题意可分段的间隔,故选C.【题目点拨】本题主要考查了系统抽样的定义和方法,其中解答中熟记系统抽样的定义和方法是解答的关键,着重考查了推理与运算能力,属于基础题.2、C【解题分析】由题意得,∴.选C.3、A【解题分析】

先根据求出与之垂直直线的斜率,再利用点斜式求得直线方程。【题目详解】由可得直线斜率,根据两直线垂直的关系,求得,再利用点斜式,可求得直线方程为,化简得,选A【题目点拨】当直线斜率存在时,直线垂直的斜率关系为4、C【解题分析】

求出余弦函数的周期,对称轴,单调性,逐个判断选项的正误即可.【题目详解】函数,函数的周期为,所以①正确;时,,函数取得最大值,所以函数图象关于直线对称,②正确;函数满足即.所以③正确;因为时,,函数取得最大值,所以函数在上不是单调增函数,不正确;故选.【题目点拨】本题主要考查余弦函数的单调性、周期性以及对称轴等性质的应用.5、A【解题分析】

根据题意可知的值,从而可求的值.【题目详解】因为,,则.故选A.【题目点拨】本题考查任意角的三角函数的基本计算,难度较易.若终边与单位圆交于点,则.6、C【解题分析】

根据一元二次不等式的解法,即可求得不等式的解集,得到答案.【题目详解】由题意,不等式,即或,解得,即不等式的解集为,故选C.【题目点拨】本题主要考查了一元二次不等式的解法,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与计算能力,属于基础题.7、D【解题分析】

根据是第三象限的角得,利用同角三角函数的基本关系,求得的值.【题目详解】因为是第三象限的角,所以,因为,所以解得:,故选D.【题目点拨】本题考查余弦函数在第三象限的符号及同角三角函数的基本关系,即已知值,求的值.8、D【解题分析】

由已知中直线和互相平行,求出的值,再根据两条平行线间的距离公式求得它们之间的距离.【题目详解】∵直线和互相平行,则,将直线的方程化为,则两条平行直线之间的距离,===.故选:D.【题目点拨】本题主要考查两条直线平行的性质,两条平行线间的距离公式的应用,属于中档题.9、C【解题分析】

根据三视图判断几何体的形状,计算即可得解.【题目详解】该几何体是一个半径为1的球体削去四分之一,体积为.故选:C.【题目点拨】本题考查了三视图的识别和球的体积计算,属于基础题.10、A【解题分析】该立方体是正方体,切掉一个三棱柱,所以体积为,故选A。点睛:本题考查三视图还原,并求体积。此类题关键就是三视图的还原,还原过程中,本题采取切割法处理,有图可知,该立方体应该是正方体进行切割产生的,所以我们在画图的过程在,对正方体进行切割比较即可。二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

取的中点,连接,三棱锥外接球的半径再计算体积.【题目详解】如图,取的中点,连接.由题意可得,则所得三棱锥外接球的半径,其体积为.故答案为【题目点拨】本题考查了三棱锥的外切球体积,计算是解题的关键.12、【解题分析】

由二倍角求得α,则tanα可求.【题目详解】由sin2α=sinα,得2sinαcosα=sinα,∵,∴sinα≠0,则,即.∴.故答案为:.【题目点拨】本题考查三角函数的恒等变换及化简求值,考查公式的灵活应用,属于基础题.13、.【解题分析】

先求得直线的斜率,由直线垂直时的斜率关系可求得直线的斜率.再根据点斜式即可求得直线的方程.【题目详解】从原点向直线作垂线,垂足为点则直线的斜率由两条垂直直线的斜率关系可知根据点斜式可得直线的方程为化简得故答案为:【题目点拨】本题考查了直线垂直时的斜率关系,点斜式方程的应用,属于基础题.14、【解题分析】

由,使得恒成立可知,只需求出的最大值即可,再由表示平面区域内的点与定点距离的平方,因此结合平面区域即可求出结果.【题目详解】作出约束条件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目标函数,则目标函数表示平面区域内的点与定点距离的平方,由图像易知,点到的距离最大.由得,所以.因此,即的最小值为37.故答案为37【题目点拨】本题主要考查简单的线性规划问题,只需分析清楚目标函数的几何意义,即可结合可行域来求解,属于常考题型.15、【解题分析】

由题意利用韦达定理求得、的值,再利用两角差的正切公式,求得要求式子的值.【题目详解】解:、是方程的两根,,,,或,,则,故答案为:.【题目点拨】本题主要考查韦达定理,两角差的正切公式,属于基础题.16、【解题分析】

通过变形可知,累乘计算即得结论.【题目详解】∵(n+1)an=nan+1,∴,∴,,…,,累乘得:,又∵a1=1,∴an=n,故答案为:an=n.【题目点拨】本题考查数列的通项公式的求法,利用累乘法是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)当且时,利用求得,经验证时也满足所求式子,从而可得通项公式;(2)由(1)求得,利用错位相减法求得结果.【题目详解】(1)当且时,…①当时,,也满足①式数列的通项公式为:(2)由(1)知:【题目点拨】本题考查利用求解数列通项公式、错位相减法求解数列的前项和的问题,关键是能够明确当数列通项为等差与等比乘积时,采用错位相减法求和,属于常考题型.18、(1);(2)【解题分析】

(1)根据诱导公式先化简每一项,然后即可得到最简结果;(2)利用“齐次”式的特点,分子分母同除以,将其化简为关于的形式即可求值.【题目详解】(1)原式,(2)原式【题目点拨】本题考查诱导公式和同角三角函数的基本关系的运用,难度较易.(1)利用诱导公式进行化简时,掌握“奇变偶不变”的实际含义进行化简即可;(2)求解形如的“齐次式”的值,注意采用分子分母同除以的方法,将其化简为关于的形式再求值.19、(1),;(2)【解题分析】

(1)通过求解数列的通项公式,从而可以求出首项与公比,即可得到的通项公式;(2)化简,利用错位相减法求解数列的和即可.【题目详解】(1)∴,∴,∵,∴,∴,,∵,,∴,从而,∵数列为等比数列∴数列的公比为,从而;(2)∵,,∴∴∴,∴.【题目点拨】本题考查已知求的通项公式以及数列求和,考查计算能力.在通过求的通项公式时,不要忽略时的情况.20、(1)①是,②不是,理由见解析(2)证明见解析(3)存在,证明见解析【解题分析】

(1)①举出符合条件的具体例子即可;②反证法推出矛盾;

(2)根据题意找出符合条件的为等差数列即可;

(3)首先,根据,将公差表示出来,计算任意相邻两项的差值可以发现不大于.那么用裂项相消的方法表示出,结合相邻两项差值不大于可以得到,接下来,只需证明存在满足条件的即可.用和公差表示出,并展开可以发现多项式的最高次项为,而已知,因此在足够大时显然成立.结论得证.【题目详解】解:(1)数列①:1,3,5,7,9,11是“弱等差数列”

取分别为1,3,5,7,9,11,13即可;

数列②2,,,,不是“弱等差数列”

否则,若数列②为“弱等差数列”,则存在实数构成等差数列,设公差为,

,又与矛盾,所以数列②2,,,,不是“弱等差数列”;

(2)证明:设,

令,取,则,

则,

就有,命题成立.

故数列为“弱等差数列”;(3)若存在这样的正整数,使得

成立.

因为,,

则,其中待定.

从而,

又,∴当时,总成立.

如果取适当的,使得,又有

所以,有

为使得,需要,

上式左侧展开为关于的多项式,最高次项为,其次数为,

故,对于任意给定正整数,当充分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论